Ng Aylwin, Bursteinas Borisas, Gao Qiong, Mollison Ewan, Zvelebil Marketa
Bioinformatics and Systems Biology Group, Ludwig Institute for Cancer Research, University College London Branch, 91 Riding House Street, London W1W 7BS, UK.
Brief Bioinform. 2006 Dec;7(4):318-30. doi: 10.1093/bib/bbl036. Epub 2006 Oct 13.
In systems biology, biologically relevant quantitative modelling of physiological processes requires the integration of experimental data from diverse sources. Recent developments in high-throughput methodologies enable the analysis of the transcriptome, proteome, interactome, metabolome and phenome on a previously unprecedented scale, thus contributing to the deluge of experimental data held in numerous public databases. In this review, we describe some of the databases and simulation tools that are relevant to systems biology and discuss a number of key issues affecting data integration and the challenges these pose to systems-level research.
在系统生物学中,对生理过程进行具有生物学相关性的定量建模需要整合来自不同来源的实验数据。高通量方法的最新进展使得能够以前所未有的规模分析转录组、蛋白质组、相互作用组、代谢组和表型组,从而导致众多公共数据库中实验数据的大量涌现。在本综述中,我们描述了一些与系统生物学相关的数据库和模拟工具,并讨论了影响数据整合的一些关键问题以及这些问题给系统层面研究带来的挑战。