Rodriguez-Fernandez Maria, Rehberg Markus, Kremling Andreas, Banga Julio R
(Bio) Process Engineering Group, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain.
BMC Syst Biol. 2013 Aug 12;7:76. doi: 10.1186/1752-0509-7-76.
Model development is a key task in systems biology, which typically starts from an initial model candidate and, involving an iterative cycle of hypotheses-driven model modifications, leads to new experimentation and subsequent model identification steps. The final product of this cycle is a satisfactory refined model of the biological phenomena under study. During such iterative model development, researchers frequently propose a set of model candidates from which the best alternative must be selected. Here we consider this problem of model selection and formulate it as a simultaneous model selection and parameter identification problem. More precisely, we consider a general mixed-integer nonlinear programming (MINLP) formulation for model selection and identification, with emphasis on dynamic models consisting of sets of either ODEs (ordinary differential equations) or DAEs (differential algebraic equations).
We solved the MINLP formulation for model selection and identification using an algorithm based on Scatter Search (SS). We illustrate the capabilities and efficiency of the proposed strategy with a case study considering the KdpD/KdpE system regulating potassium homeostasis in Escherichia coli. The proposed approach resulted in a final model that presents a better fit to the in silico generated experimental data.
The presented MINLP-based optimization approach for nested-model selection and identification is a powerful methodology for model development in systems biology. This strategy can be used to perform model selection and parameter estimation in one single step, thus greatly reducing the number of experiments and computations of traditional modeling approaches.
模型开发是系统生物学中的一项关键任务,通常从初始模型候选开始,经过假设驱动的模型修改的迭代循环,进而进入新的实验和后续的模型识别步骤。这个循环的最终产物是所研究生物现象的一个令人满意的精炼模型。在这种迭代模型开发过程中,研究人员经常会提出一组模型候选,必须从中选择最佳方案。在此,我们考虑模型选择问题,并将其表述为一个同时进行模型选择和参数识别的问题。更确切地说,我们考虑一种用于模型选择和识别的通用混合整数非线性规划(MINLP)公式,重点关注由常微分方程(ODE)集或微分代数方程(DAE)集组成的动态模型。
我们使用一种基于散射搜索(SS)的算法解决了用于模型选择和识别的MINLP公式。通过一个考虑大肠杆菌中调节钾离子稳态的KdpD/KdpE系统的案例研究,我们展示了所提出策略的能力和效率。所提出的方法得到了一个最终模型,该模型对计算机模拟生成的实验数据拟合得更好。
所提出的基于MINLP的嵌套模型选择和识别优化方法是系统生物学中模型开发的一种强大方法。这种策略可用于在一个步骤中进行模型选择和参数估计,从而大大减少传统建模方法的实验和计算数量。