Mattson David L, Meister Carla J
Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
Am J Physiol Regul Integr Comp Physiol. 2005 Oct;289(4):R991-7. doi: 10.1152/ajpregu.00207.2005. Epub 2005 Jun 16.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.
在野生型(WT;C57BL/6J)小鼠、内皮型一氧化氮合酶基因敲除突变体[eNOS(-/-)]小鼠和神经元型一氧化氮合酶基因敲除突变体[nNOS(-/-)]小鼠中进行了实验,以确定在基础条件下以及输注血管紧张素II期间,哪种一氧化氮合酶亚型调节肾皮质和髓质血流。在Inactin麻醉的WT和nNOS(-/-)小鼠中,用N(ω)-硝基-L-精氨酸甲酯(L-NAME;50 mg/kg静脉注射)抑制一氧化氮合酶可使动脉血压升高28 - 31 mmHg,并显著降低肾皮质血流(18 - 24%)和肾髓质血流(13 - 18%)。相比之下,给eNOS(-/-)小鼠注射L-NAME后,血压以及肾皮质和髓质血流未发生改变,这表明源自eNOS的一氧化氮调节小鼠的基础血管阻力。在随后的实验中,静脉注射血管紧张素II(20 ng·kg⁻¹·min⁻¹)可使WT、eNOS(-/-)、nNOS(-/-)小鼠以及用L-NAME处理的WT小鼠的肾皮质血流显著降低(15 - 25%)。然而,输注血管紧张素II可使WT和eNOS(-/-)小鼠的髓质血流显著增加(12 - 15%)。在nNOS(-/-)小鼠、预先用L-NAME处理的WT或eNOS(-/-)小鼠以及给予nNOS抑制剂5-(1-亚氨基-3-丁烯基)-L-鸟氨酸(1 mg·kg⁻¹·h⁻¹)的WT小鼠中,未观察到输注血管紧张素II后髓质血流增加。这些数据表明,来自eNOS的一氧化氮调节小鼠肾皮质和髓质的基础血流, 而由nNOS产生的一氧化氮介导了对血管紧张素II的反应中髓质血流的增加。