Messerli Mark A, Amaral-Zettler Linda A, Zettler Erik, Jung Sung-Kwon, Smith Peter J S, Sogin Mitchell L
The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
J Exp Biol. 2005 Jul;208(Pt 13):2569-79. doi: 10.1242/jeb.01660.
Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.
与生长在中性pH环境的相似物种相比,生长在酸性环境(pH<3)中的生物体预计具有根本不同的分子结构和生理调控机制。我们通过测定从富含重金属的酸性河流力拓河(pH 1.7 - 2.5)中分离出的嗜酸性衣藻(ATCC PRA - 125)跨膜电化学H⁺梯度的大小,开始研究这一前提。这种嗜酸性生物在pH 2时生长最快,但能够在较宽的pH范围内(1.5 - 7.0)生长,而莱茵衣藻则局限于在pH≥3时生长,最佳生长pH在5.5至8.5之间。使用荧光H⁺指示剂2',7'-双-(2-羧乙基)-5-(和-6)-羧基荧光素(BCECF),我们发现嗜酸性衣藻在pH 2和pH 7的培养基中,胞质平均pH均维持在6.6,而莱茵衣藻在pH 7的培养基中胞质平均pH维持在7.1。使用细胞内电极在pH 2和pH 7条件下测量嗜酸性衣藻的跨膜电势差接近0 mV,这在植物、动物和原生生物中是罕见的值。[H⁺] 40000倍的差异可能是主动或被动机制的结果。通过监测ATP消耗速率检测到主动维持的证据。在峰值时,细胞在pH 2的培养基中每秒消耗的ATP比在pH 7时多约7%。这种增加的消耗速率足以解释跨对H⁺具有相对高渗透性(7×10⁻⁸ cm s⁻¹)的膜进入胞质的H⁺的去除。我们的结果表明,ATP消耗速率的小幅增加可以解释跨膜H⁺梯度的维持,而无需在细胞表面设置H⁺屏障。