Counil E, Verger P, Volatier J-L
INRA-Mét@risk, Méthodologie d'analyse du risque alimentaire, INA P-G, 16 rue Claude Bernard, 75231 Paris Cedex 5, France.
Food Chem Toxicol. 2005 Oct;43(10):1541-55. doi: 10.1016/j.fct.2005.04.009.
The contamination of foods dedicated to human consumption varies over space and time. In exposure assessment, this is usually addressed through probabilistic modelling. The present work explores how the variability and uncertainty of exposures estimated at the population level are affected by: (a) the (non-)parametric nature of input contamination distributions; (b) the time-window used to sample contamination values within those distributions. Focusing on exposure of the French population to food mycotoxin ochratoxin A, we implement a range of second-order Monte-Carlo simulations that allow distinguishing variability of exposures from uncertainty of distributional parameters estimates. A simulation runs 10,000 iterations. Overall estimates of parameters are given by the median across iterations and 95%CI by 2.5th and 97.5th percentiles. Our results show that: (a) parametric (log-normal) input distributions may lead to over-estimation of variability and greater uncertainty as compared to non-parametric ones (P97.5 [95%CI] of 7.1 [6.6;7.7] for Parametric-Occasion, 4.6 [4.3;5.0] for Non-Parametric-Occasion), and that (b) the 'Occasion' time-window combines better estimate of variability and lower uncertainty when exposure modelling is applied to populations living in developed countries with complex agri-food systems (P97.5 [95%CI]: 7.3 [6.2;8.9] for Non-Parametric-Week, 4.6 [4.3;5.0] for Non-Parametric-Occasion). A deterministic approach is nevertheless preferred to probabilistic modelling every time input data quality is questionable.
供人类食用的食品污染情况随空间和时间而变化。在暴露评估中,这通常通过概率建模来解决。本研究探讨了在人群水平上估计的暴露变异性和不确定性如何受到以下因素的影响:(a) 输入污染分布的(非)参数性质;(b) 用于在这些分布中采样污染值的时间窗口。以法国人群接触食品中霉菌毒素赭曲霉毒素A的情况为例,我们进行了一系列二阶蒙特卡洛模拟,以区分暴露的变异性与分布参数估计的不确定性。一次模拟运行10,000次迭代。参数的总体估计值由各次迭代的中位数给出,95%置信区间由第2.5百分位数和第97.5百分位数给出。我们的结果表明:(a) 与非参数输入分布相比,参数(对数正态)输入分布可能导致变异性估计过高和不确定性更大(参数-场合的P97.5[95%置信区间]为7.1[6.6;7.7],非参数-场合为4.6[4.3;5.0]),并且(b) 当将暴露建模应用于生活在具有复杂农业食品系统的发达国家的人群时,“场合”时间窗口能更好地结合变异性估计和更低的不确定性(非参数-周的P97.5[95%置信区间]:7.3[6.2;8.9],非参数-场合为4.6[4.3;5.0])。然而,每当输入数据质量存疑时,确定性方法仍优于概率建模。