Ramirez Jan-Marino, Viemari Jean-Charles
Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
Respir Physiol Neurobiol. 2005 Jul 28;147(2-3):145-57. doi: 10.1016/j.resp.2005.05.003.
In vitro and in vivo studies have identified the pre-Bötzinger complex as an important kernel for the generation of inspiratory activity. The mechanisms underlying inspiratory rhythm generation involve pacemaker as well as synaptic mechanisms. In slice preparations, blockade of pacemaker properties with blockers for the persistent Na+ current, and the Ca2+-activated inward cationic current, abolishes respiratory activity. Here we show that blockade of the persistent Na+ current alone is sufficient to abolish respiratory activity in the in situ preparation. Although pacemaker neurons may be critical for establishing the basic respiratory rhythm, their rhythmic output is modulated by many elements of the respiratory network. For example, levels of synaptic inhibition control whether they burst or not, and endogenously released neuromodulators, such as serotonin and substance P modulate their intrinsic membrane currents. We hypothesize that the balance between synaptic and intrinsic pacemaker properties in the respiratory network is plastic, and that alterations of this balance may lead to dynamic reconfigurations of the respiratory network, which ultimately give rise to different activity patterns.
体外和体内研究已确定前包钦格复合体是产生吸气活动的重要核心。吸气节律产生的潜在机制涉及起搏器机制以及突触机制。在脑片制备中,用持续性钠电流和钙激活内向阳离子电流的阻滞剂阻断起搏器特性,会消除呼吸活动。在此我们表明,仅阻断持续性钠电流就足以消除原位制备中的呼吸活动。尽管起搏器神经元对于建立基本呼吸节律可能至关重要,但其节律性输出受到呼吸网络中许多元件的调节。例如,突触抑制水平控制它们是否爆发,内源性释放的神经调质,如5-羟色胺和P物质,调节其固有膜电流。我们假设呼吸网络中突触和固有起搏器特性之间的平衡是可塑的,并且这种平衡的改变可能导致呼吸网络的动态重构,最终产生不同的活动模式。