Kinkead Richard
Department of Pediatrics, Laval University, Centre de Recherche du CHUQ, Hôpital St-François d'Assise (D0-705C), 10 rue de l'Espinay, Québec, QC, Canada G1L 3L5.
Respir Physiol Neurobiol. 2009 Aug 31;168(1-2):39-48. doi: 10.1016/j.resp.2009.05.011. Epub 2009 Jun 6.
Understanding the neural substrate driving breathing has puzzled physiologists for more than a century. The discovery of the pre-Bötzinger complex (preBötC) in newborn rodents as a structure with a unique physiological function in respiratory rhythm generation was an important progress in respiratory neurobiology that stimulated much research. Owing to the extensive literature describing the location, organisation, and function of the preBötC mainly in newborn rodents, this structure has become the point of reference in studies addressing respiratory rhythm generation in other mammals and various classes of vertebrates. This paper reviews recent progress made in non-mammalian vertebrates in our understanding of the location and function of the neural networks driving respiratory activity. As in newborn rodents, data from lampreys, air breathing fish, and amphibians show that the production of eupnea is the result of interactions between multiple (at least two) rhythmogenic networks. These networks are located in anatomically distinct areas and show different functional properties in terms of their ability to produce (or not) bursting activity in the absence of synaptic inputs (e.g. pacemaker neurons) and their sensitivity to specific neuromodulators such as substance P, somatostatin, and opioids. Current data indicate that respiratory rhythmogenesis is a phylogenetically ancient function that was highly conserved throughout evolution and that a comparative approach remains important to derive broader biological principles and a more comprehensive view.
一个多世纪以来,理解驱动呼吸的神经基质一直困扰着生理学家。新生啮齿动物前包钦格复合体(preBötC)作为一种在呼吸节律产生中具有独特生理功能的结构被发现,这是呼吸神经生物学的一项重要进展,激发了大量研究。由于大量文献主要描述了新生啮齿动物中preBötC的位置、组织和功能,该结构已成为研究其他哺乳动物和各类脊椎动物呼吸节律产生的参考点。本文综述了非哺乳动物脊椎动物在我们对驱动呼吸活动的神经网络的位置和功能的理解方面取得的最新进展。与新生啮齿动物一样,七鳃鳗、空气呼吸鱼类和两栖动物的数据表明,平稳呼吸的产生是多个(至少两个)节律发生网络相互作用的结果。这些网络位于解剖学上不同的区域,在没有突触输入(如起搏神经元)时产生(或不产生)爆发性活动的能力以及它们对特定神经调质(如P物质、生长抑素和阿片类物质)的敏感性方面表现出不同的功能特性。目前的数据表明,呼吸节律发生是一种在进化过程中高度保守的系统发育上古老的功能,比较方法对于推导更广泛的生物学原理和更全面的观点仍然很重要。