Suppr超能文献

生命之网:重建微生物系统发育网络

The net of life: reconstructing the microbial phylogenetic network.

作者信息

Kunin Victor, Goldovsky Leon, Darzentas Nikos, Ouzounis Christos A

机构信息

Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, United Kingdom.

出版信息

Genome Res. 2005 Jul;15(7):954-9. doi: 10.1101/gr.3666505. Epub 2005 Jun 17.

Abstract

It has previously been suggested that the phylogeny of microbial species might be better described as a network containing vertical and horizontal gene transfer (HGT) events. Yet, all phylogenetic reconstructions so far have presented microbial trees rather than networks. Here, we present a first attempt to reconstruct such an evolutionary network, which we term the "net of life". We use available tree reconstruction methods to infer vertical inheritance, and use an ancestral state inference algorithm to map HGT events on the tree. We also describe a weighting scheme used to estimate the number of genes exchanged between pairs of organisms. We demonstrate that vertical inheritance constitutes the bulk of gene transfer on the tree of life. We term the bulk of horizontal gene flow between tree nodes as "vines", and demonstrate that multiple but mostly tiny vines interconnect the tree. Our results strongly suggest that the HGT network is a scale-free graph, a finding with important implications for genome evolution. We propose that genes might propagate extremely rapidly across microbial species through the HGT network, using certain organisms as hubs.

摘要

此前有人提出,微生物物种的系统发育可能更适合描述为一个包含垂直和水平基因转移(HGT)事件的网络。然而,到目前为止,所有的系统发育重建都呈现出微生物树而非网络。在此,我们首次尝试重建这样一个进化网络,我们将其称为“生命之网”。我们使用现有的树重建方法来推断垂直遗传,并使用一种祖先状态推断算法在树上绘制HGT事件。我们还描述了一种加权方案,用于估计生物体对之间交换的基因数量。我们证明,垂直遗传构成了生命之树上基因转移的主体。我们将树节点之间的大部分水平基因流称为“藤蔓”,并证明多个但大多微小的藤蔓将树相互连接。我们的结果有力地表明,HGT网络是一个无标度图,这一发现对基因组进化具有重要意义。我们提出,基因可能通过HGT网络在微生物物种间极其迅速地传播,利用某些生物体作为枢纽。

相似文献

1
The net of life: reconstructing the microbial phylogenetic network.
Genome Res. 2005 Jul;15(7):954-9. doi: 10.1101/gr.3666505. Epub 2005 Jun 17.
2
Inferring phylogenetic networks by the maximum parsimony criterion: a case study.
Mol Biol Evol. 2007 Jan;24(1):324-37. doi: 10.1093/molbev/msl163. Epub 2006 Oct 26.
4
A model of horizontal gene transfer and the bacterial phylogeny problem.
Syst Biol. 2007 Aug;56(4):633-42. doi: 10.1080/10635150701546231.
5
Horizontal gene transfer accelerates genome innovation and evolution.
Mol Biol Evol. 2003 Oct;20(10):1598-602. doi: 10.1093/molbev/msg154. Epub 2003 May 30.
7
Ancient horizontal gene transfer can benefit phylogenetic reconstruction.
Trends Genet. 2006 Jul;22(7):361-6. doi: 10.1016/j.tig.2006.05.004. Epub 2006 May 30.
9
The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process.
Mol Biol Evol. 2006 Nov;23(11):2049-57. doi: 10.1093/molbev/msl075. Epub 2006 Aug 1.
10
A likelihood framework to measure horizontal gene transfer.
Mol Biol Evol. 2007 Jun;24(6):1312-9. doi: 10.1093/molbev/msm052. Epub 2007 Mar 20.

引用本文的文献

1
Genetically modified microorganisms for agricultural use: an opportunity for the advancement of risk assessment criteria in Argentina.
Front Bioeng Biotechnol. 2025 Jun 13;13:1612226. doi: 10.3389/fbioe.2025.1612226. eCollection 2025.
4
CGG toolkit: Software components for computational genomics.
PLoS Comput Biol. 2023 Nov 7;19(11):e1011498. doi: 10.1371/journal.pcbi.1011498. eCollection 2023 Nov.
6
Dissecting the HGT network of carbon metabolic genes in soil-borne microbiota.
Front Microbiol. 2023 Jul 7;14:1173748. doi: 10.3389/fmicb.2023.1173748. eCollection 2023.
7
Reconstructing horizontal gene flow network to understand prokaryotic evolution.
Open Biol. 2022 Nov;12(11):220169. doi: 10.1098/rsob.220169. Epub 2022 Nov 30.
9
The Notable Achievements and the Prospects of Bacterial Pathogen Genomics.
Microorganisms. 2022 May 17;10(5):1040. doi: 10.3390/microorganisms10051040.
10
Ancestral sequences of a large promiscuous enzyme family correspond to bridges in sequence space in a network representation.
J R Soc Interface. 2021 Nov;18(184):20210389. doi: 10.1098/rsif.2021.0389. Epub 2021 Nov 3.

本文引用的文献

1
Measuring genome conservation across taxa: divided strains and united kingdoms.
Nucleic Acids Res. 2005 Jan 28;33(2):616-21. doi: 10.1093/nar/gki181. Print 2005.
2
Phylogenetic reconstruction and lateral gene transfer.
Trends Microbiol. 2004 Sep;12(9):406-11. doi: 10.1016/j.tim.2004.07.002.
3
Type III secretion system effector proteins: double agents in bacterial disease and plant defense.
Annu Rev Phytopathol. 2004;42:385-414. doi: 10.1146/annurev.phyto.42.040103.110731.
4
Lessons learned from the genome analysis of ralstonia solanacearum.
Annu Rev Phytopathol. 2004;42:107-34. doi: 10.1146/annurev.phyto.42.011204.104301.
5
Optimal, efficient reconstruction of phylogenetic networks with constrained recombination.
J Bioinform Comput Biol. 2004 Mar;2(1):173-213. doi: 10.1142/s0219720004000521.
6
Biased biological functions of horizontally transferred genes in prokaryotic genomes.
Nat Genet. 2004 Jul;36(7):760-6. doi: 10.1038/ng1381. Epub 2004 Jun 20.
7
From a phylogenetic tree to a reticulated network.
J Comput Biol. 2004;11(1):195-212. doi: 10.1089/106652704773416966.
8
An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234.
J Bacteriol. 2004 Jan;186(2):535-42. doi: 10.1128/JB.186.2.535-542.2004.
9
Lateral gene transfer and the origins of prokaryotic groups.
Annu Rev Genet. 2003;37:283-328. doi: 10.1146/annurev.genet.37.050503.084247.
10
Genome-scale approaches to resolving incongruence in molecular phylogenies.
Nature. 2003 Oct 23;425(6960):798-804. doi: 10.1038/nature02053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验