Abrishamchi A, Tajrishy M, Shafieian P
Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
Water Environ Res. 2005 May-Jun;77(3):279-86. doi: 10.2175/106143005x41861.
Water-quality modeling and prediction is a complicated task because of inherent randomness and uncertainties associated with various processes and variables throughout the stream environment and the lack of appropriate data. Hence, the results of mathematical models are always approximate, lying within an uncertainty. This paper describes and demonstrates the application of the U.S. Environmental Protection Agency's water-quality model, QUAL2E-UNCAS, to the Zayandeh-Rood River in Iran. First-order reliability analysis is used to examine the variability of predicted water-quality parameters of total dissolved solids, dissolved oxygen, and biochemical oxygen demand. This analysis also determines key sources of uncertainty affecting prediction of the water-quality parameters. The results show that reliability analysis can help water-quality modelers and planners to quantify the reliability of the water-quality predictions and to carry out more efficiently planned sampling and data collection programs to reduce model-prediction uncertainty.
水质建模与预测是一项复杂的任务,原因在于整个河流环境中各种过程和变量存在固有的随机性和不确定性,且缺乏适当的数据。因此,数学模型的结果总是近似的,存在一定的不确定性。本文描述并展示了美国环境保护局的水质模型QUAL2E - UNCAS在伊朗扎扬德河的应用。采用一阶可靠性分析来检验总溶解固体、溶解氧和生化需氧量等预测水质参数的变异性。该分析还确定了影响水质参数预测的关键不确定性来源。结果表明,可靠性分析有助于水质建模人员和规划者量化水质预测的可靠性,并更高效地开展有计划的采样和数据收集项目,以减少模型预测的不确定性。