Tamura Hirotoshi, Appel Markus, Richling Elke, Schreier Peter
Lehrstuhl für Lebensmittelchemie, Universität Würzburg, Germany.
J Agric Food Chem. 2005 Jun 29;53(13):5397-401. doi: 10.1021/jf0503964.
Authenticity assessment of gamma-decalactone (1) and delta-decalactone (2) from peach (Prunus persica var. persica), apricot (Prunus armeniaca), and nectarine (Prunus persica var. nectarina) was performed using gas chromatography-isotope ratio mass spectrometry (GC-IRMS) in the combustion (C) and pyrolysis (P) mode. In addition, commercially available synthetic (nature-identical) 1 and 2 as well as biotechnologically produced samples (declared to be "natural") were characterized by their delta(2)H(V)(-)(SMOW) and delta(13)C(V)(-)(PDB) values. For the Prunus fruits under study, rather narrow ranges of delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW) data of 1, varying from - 34.6 per thousand to - 38.4 per thousand and -160 per thousand to -206 per thousand, respectively, were obtained. Synthetic references of 1 showed delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW) data ranging from -27.4 per thousand to -28.3 per thousand and -151 per thousand to -184 per thousand, respectively. Samples of 1 declared to be "natural" exhibited ranges from -28.1 per thousand to -29.2 per thousand and -192 per thousand to -286 per thousand for delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW), respectively. For 2 from peach, apricot, and nectarine, delta(13)C(V)(-)(PDB) values ranging from -34.0 per thousand to -37.9 per thousand were determined; the delta(2)H(V)(-)(SMOW) values ranged from -171 per thousand to -228 per thousand. The delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW) data for synthetic 2 were -28.2 per thousand and -171 per thousand, respectively, that is, similar to those of 2 from "natural" origin, ranging from -27.7 per thousand to -30.1 per thousand and -185 per thousand to -230 per thousand for delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW), respectively. GC-C/P-IRMS allowed clear-cut analytical differentiation of the synthetic and "ex-plant" origin of 1 and 2, whereas narrow ranges of delta(13)C(V)(-)(PDB) and delta(2)H(V)(-)(SMOW) data were found for samples of synthetic and "natural" origin.
采用气相色谱-同位素比值质谱法(GC-IRMS)的燃烧(C)模式和热解(P)模式,对桃(Prunus persica var. persica)、杏(Prunus armeniaca)和油桃(Prunus persica var. nectarina)中的γ-癸内酯(1)和δ-癸内酯(2)进行了真实性评估。此外,对市售合成(天然等同)的1和2以及生物技术生产的样品(宣称是“天然”的),通过其δ(2)H(V)(-)(SMOW)和δ(13)C(V)(-)(PDB)值进行了表征。对于所研究的李属果实,1的δ(13)C(V)(-)(PDB)和δ(2)H(V)(-)(SMOW)数据范围相当窄,分别为-34.6‰至-38.4‰和-160‰至-206‰。1的合成参比物的δ(13)C(V)(-)(PDB)和δ(2)H(V)(-)(SMOW)数据分别为-27.4‰至-28.3‰和-151‰至-184‰。宣称是“天然”的1样品,其δ(13)C(V)(-)(PDB)和δ(2)H(V)(-)(SMOW)范围分别为-28.1‰至-29.2‰和-192‰至-286‰。对于桃、杏和油桃中的2,测定的δ(13)C(V)(-)(PDB)值范围为-34.0‰至-37.9‰;δ(2)H(V)(-)(SMOW)值范围为-171‰至-228‰。合成2的δ(13)C(V)(-)(PDB)和δ(2)H(V)(-)(SMOW)数据分别为-28.2‰和-171‰,即与“天然”来源的2的数据相似,其δ(13)C(V)(-)(PDB)和δ(2)H(V)(-)(SMOW)分别为-27.7‰至-30.1‰和-185‰至-230‰。GC-C/P-IRMS能够清晰地分析区分1和2的合成来源与“植物外”来源,而合成来源和“天然”来源样品的δ(13)C(V)(-)(PDB)和δ(2)H(V)(-)(SMOW)数据范围较窄。