Kropp Ashleigh, Gillett David L, Venugopal Hari, Gonzálvez Miguel A, Lingford James P, Jain Surbhi, Barlow Christopher K, Zhang Jie, Greening Chris, Grinter Rhys
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Ramaciotti Centre for Cryo-Electron Microscopy, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Nat Chem Biol. 2025 Jan 29. doi: 10.1038/s41589-025-01836-0.
Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain. Here, we use cryo-electron microscopy and structural modeling to show how Mo-CODH (CoxSML) from Mycobacterium smegmatis interacts with its partner, the membrane-bound menaquinone-binding protein CoxG. We provide electrochemical, biochemical and genetic evidence that Mo-CODH transfers CO-derived electrons to the aerobic respiratory chain through CoxG. Lastly, we show that Mo-CODH and CoxG genetically and structurally associate in diverse bacteria and archaea. These findings reveal the basis of the biogeochemically and ecologically important process of atmospheric CO oxidation, while demonstrating that long-range quinone transport is a general mechanism of energy conservation, which convergently evolved on multiple occasions.
多种细菌和古生菌利用大气中的一氧化碳作为长期生存的能量来源。细菌利用[钼铜]一氧化碳脱氢酶(钼-CODH)将大气中的一氧化碳转化为二氧化碳,将获得的电子传递到有氧呼吸链。然而,尚不清楚这些酶如何在低浓度下氧化一氧化碳以及如何与呼吸链相互作用。在这里,我们使用冷冻电子显微镜和结构建模来展示耻垢分枝杆菌的钼-CODH(CoxSML)如何与其伙伴、膜结合的甲萘醌结合蛋白CoxG相互作用。我们提供了电化学、生化和遗传学证据,表明钼-CODH通过CoxG将一氧化碳衍生的电子传递到有氧呼吸链。最后,我们表明钼-CODH和CoxG在多种细菌和古生菌中在遗传和结构上相关联。这些发现揭示了大气一氧化碳氧化这一具有生物地球化学和生态重要性的过程的基础,同时表明远程醌运输是一种普遍的能量守恒机制,它在多个场合趋同进化。