Dong Anlei, Bhanu Bir
Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA.
IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):450-66. doi: 10.1109/tsmcb.2005.846653.
Concept learning in content-based image retrieval systems is a challenging task. This paper presents an active concept learning approach based on the mixture model to deal with the two basic aspects of a database system: the changing (image insertion or removal) nature of a database and user queries. To achieve concept learning, we a) propose a new user directed semi-supervised expectation-maximization algorithm for mixture parameter estimation, and b) develop a novel model selection method based on Bayesian analysis that evaluates the consistency of hypothesized models with the available information. The analysis of exploitation versus exploration in the search space helps to find the optimal model efficiently. Our concept knowledge transduction approach is able to deal with the cases of image insertion and query images being outside the database. The system handles the situation where users may mislabel images during relevance feedback. Experimental results on Corel database show the efficacy of our active concept learning approach and the improvement in retrieval performance by concept transduction.
基于内容的图像检索系统中的概念学习是一项具有挑战性的任务。本文提出了一种基于混合模型的主动概念学习方法,以处理数据库系统的两个基本方面:数据库不断变化的(图像插入或删除)性质以及用户查询。为了实现概念学习,我们:a)提出一种新的用户导向半监督期望最大化算法用于混合参数估计;b)开发一种基于贝叶斯分析的新型模型选择方法,该方法评估假设模型与可用信息的一致性。在搜索空间中对利用与探索的分析有助于有效地找到最优模型。我们的概念知识转换方法能够处理图像插入以及查询图像不在数据库中的情况。该系统能够处理用户在相关反馈过程中可能错误标注图像的情况。在Corel数据库上的实验结果表明了我们的主动概念学习方法的有效性以及通过概念转换在检索性能上的提升。