Giersing Birgitte, Miura Kazutoyo, Shimp Richard, Wang Jin, Zhou Hong, Orcutt Andrew, Stowers Anthony, Saul Allan, Miller Louis H, Long Carole, Singh Sanjay
Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, Twinbrook I, Room 1210A, 5640 Fisher Lane, Rockville, Maryland 20852, USA.
Infect Immun. 2005 Jul;73(7):3963-70. doi: 10.1128/IAI.73.7.3963-3970.2005.
Recombinant apical membrane antigen 1 (AMA1) is a leading vaccine candidate for Plasmodium falciparum malaria, as antibodies against recombinant P. falciparum AMA1 (PfAMA1) interrupt merozoite invasion into erythrocytes. In order to investigate the role of posttranslational modification in modulating the functional immune response to recombinant AMA1, two separate alleles of PfAMA1 (FVO and 3D7), in which native N-glycosylation sites have been mutated, were produced using Escherichia coli and a Pichia pastoris expression system. Recombinant Pichia pastoris AMA1-FVO (PpAMA1-FVO) and PpAMA1-3D7 are O-linked glycosylated, and 45% of PpAMA1-3D7 is nicked, though all four recombinant molecules react with conformation-specific monoclonal antibodies. To address the immunological effect of O-linked glycosylation, we compared the immunogenicity of E. coli AMA1-FVO (EcAMA1-FVO) and PpAMA1-FVO antigens, since both molecules are intact. The effect of antigen nicking was then investigated by comparing the immunogenicity of EcAMA1-3D7 and PpAMA1-3D7. Our data demonstrate that there is no significant difference in the rabbit antibody titer elicited towards EcAMA1-FVO and PpAMA1-FVO or to EcAMA1-3D7 and PpAMA1-3D7. Furthermore, we have demonstrated that recombinant AMA1 (FVO or 3D7), whether expressed and refolded from E. coli or produced from the Pichia expression system, is equivalent and mimics the functionality of the native protein in in vitro growth inhibition assay experiments. We conclude that in the case of recombinant AMA1, the E. coli- and P. pastoris-derived antigens are immunologically and functionally equivalent and are unaffected by the posttranslational modification resulting from expression in these two systems.
重组顶端膜抗原1(AMA1)是恶性疟原虫疟疾的主要候选疫苗,因为针对重组恶性疟原虫AMA1(PfAMA1)的抗体可阻断裂殖子侵入红细胞。为了研究翻译后修饰在调节对重组AMA1的功能性免疫反应中的作用,利用大肠杆菌和毕赤酵母表达系统产生了PfAMA1的两个不同等位基因(FVO和3D7),其中天然N-糖基化位点已发生突变。重组毕赤酵母AMA1-FVO(PpAMA1-FVO)和PpAMA1-3D7是O-连接糖基化的,并且45%的PpAMA1-3D7有切口,尽管所有这四种重组分子都能与构象特异性单克隆抗体发生反应。为了研究O-连接糖基化的免疫效应,我们比较了大肠杆菌AMA1-FVO(EcAMA1-FVO)和PpAMA1-FVO抗原的免疫原性,因为这两种分子都是完整的。然后通过比较EcAMA1-3D7和PpAMA1-3D7的免疫原性来研究抗原切口的影响。我们的数据表明,针对EcAMA1-FVO和PpAMA1-FVO或EcAMA1-3D7和PpAMA1-3D7产生的兔抗体滴度没有显著差异。此外,我们已经证明,重组AMA1(FVO或3D7),无论从大肠杆菌表达和重折叠还是从毕赤酵母表达系统产生,在体外生长抑制试验实验中都是等效的,并且模拟了天然蛋白的功能。我们得出结论,就重组AMA1而言,大肠杆菌和毕赤酵母来源的抗原在免疫和功能上是等效的,并且不受这两种系统中表达所导致的翻译后修饰的影响。