Timpe Jennifer, Bevington Joyce, Casper John, Dignam John D, Trempe James P
Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, Ohio 43614-5804, USA.
Curr Gene Ther. 2005 Jun;5(3):273-84. doi: 10.2174/1566523054065011.
The defective parvovirus, adeno-associated virus (AAV), is under close scrutiny as a human gene therapy vector. AAV's non-pathogenic character, reliance on helper virus co-infection for replication and wide tissue tropism, make it an appealing vector system. The virus' simplicity and ability to generate high titer vector preparations have contributed to its wide spread use in the gene therapy community. The single stranded AAV DNA genome is encased in a 20-25 nm diameter, icosahedral protein capsid. Assembly of AAV occurs in two distinct phases. First, the three capsid proteins, VP1-3, are rapidly synthesized and assembled into an empty virion in the nucleus. In the second, rate-limiting phase, single-strand genomic DNA is inserted into pre-formed capsids. Our rudimentary knowledge of these two phases comes from radioactive labeling pulse-chase experiments, cellular fractionation and immunocytological analysis of infected cells. Although the overall pattern of virus assembly and encapsidation is known, the biochemical mechanisms involved in these processes are not understood. Elucidation of the processes of capsid assembly and encapsidation may lead to improved vector production. While all of the parvoviruses share the characteristic icosahedral particle, differences in their surface topologies dictate different receptor binding and tissue tropism. Based on the analysis of the molecular structures of the parvoviruses and capsid mutagenesis studies, investigators have manipulated the capsid to change tissue tropism and to target different cell types, thus expanding the targeting potential of AAV vectors.
有缺陷的细小病毒——腺相关病毒(AAV),作为一种人类基因治疗载体正受到密切关注。AAV的非致病特性、依赖辅助病毒共同感染进行复制以及广泛的组织嗜性,使其成为一个有吸引力的载体系统。该病毒的简单性以及产生高滴度载体制剂的能力,促使其在基因治疗领域得到广泛应用。单链AAV DNA基因组被包裹在一个直径为20 - 25纳米的二十面体蛋白质衣壳中。AAV的组装分为两个不同阶段。首先,三种衣壳蛋白VP1 - 3在细胞核中迅速合成并组装成一个空病毒粒子。在第二个限速阶段,单链基因组DNA被插入到预先形成的衣壳中。我们对这两个阶段的初步了解来自放射性标记脉冲追踪实验、细胞分级分离以及对感染细胞的免疫细胞分析。尽管病毒组装和衣壳化的总体模式是已知的,但这些过程所涉及的生化机制尚不清楚。阐明衣壳组装和衣壳化过程可能会导致载体生产的改进。虽然所有细小病毒都具有二十面体颗粒这一特征,但它们表面拓扑结构的差异决定了不同的受体结合和组织嗜性。基于对细小病毒分子结构的分析和衣壳诱变研究,研究人员对衣壳进行了操控,以改变组织嗜性并靶向不同细胞类型,从而扩大了AAV载体的靶向潜力。