Suppr超能文献

左删失数据的分析验证

Assay validation for left-censored data.

作者信息

Barnhart Huiman X, Song Jingli, Lyles Robert H

机构信息

Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Duke University, Durham, NC 27715, USA.

出版信息

Stat Med. 2005 Nov 15;24(21):3347-60. doi: 10.1002/sim.2225.

Abstract

In laboratory validation studies, it is often important to assess agreement between two assays, based on different techniques. Oftentimes, both assays have lower limits of detection and thus measurements are left censored. For example, in studies of Human Immunodeficiency Virus (HIV), the branched DNA (bDNA) assay was developed to quantify HIV-1 RNA concentrations in plasma. Validation of newer assays, such as the RT-PCR (reverse transcriptase polymerase chain reaction) involves assessing agreement of measurements obtained using the two techniques. Both bDNA and RT-PCR assays have lower limits of detection and thus new statistical methods are needed for assessing agreement between two left-censored variables. In this paper, we present maximum likelihood and generalized estimating equations approaches to evaluate agreement between two assays that are subject to lower limits of detection. The concordance correlation coefficient is used as an agreement index. The methodology is illustrated using HIV RNA assay data collected as part of a long-term HIV cohort study.

摘要

在实验室验证研究中,基于不同技术评估两种检测方法之间的一致性通常很重要。通常情况下,两种检测方法都有检测下限,因此测量值会出现截尾。例如,在人类免疫缺陷病毒(HIV)研究中,开发了分支DNA(bDNA)检测方法来定量血浆中的HIV-1 RNA浓度。对更新的检测方法(如逆转录聚合酶链反应(RT-PCR))进行验证,涉及评估使用这两种技术获得的测量值的一致性。bDNA和RT-PCR检测方法都有检测下限,因此需要新的统计方法来评估两个截尾变量之间的一致性。在本文中,我们提出了最大似然法和广义估计方程法,以评估两种受检测下限影响的检测方法之间的一致性。一致性相关系数用作一致性指标。使用作为长期HIV队列研究一部分收集的HIV RNA检测数据对该方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验