Suppr超能文献

基于自适应零跟踪神经网络的视觉诱发电位识别

Visual evoked potentials discrimination based on adaptive zero-tracking neural network.

作者信息

Mghari A, Himmi M M, Amaloud A, Regragui F

机构信息

Département de Physique, Université My Ismail faculté des Sciences et Techniques, Boutalamine, Errachidia BP 509, Morocco.

出版信息

Comput Biol Med. 2006 Apr;36(4):408-18. doi: 10.1016/j.compbiomed.2004.11.007. Epub 2005 Jun 22.

Abstract

A non-linear classifier is proposed to discriminate visual evoked potentials (VEP). It combines two techniques: the zero-tracking method and a multi-layer network. The first method consists of processing the VEP data through an adaptive linear prediction filter aiming at extracting the appropriate feature vector to be fed into the neural network. 105 VEPs collected from 48 healthy people and 57 patients are analysed to test the performances of the proposed classifier. The results obtained with a back-propagation network revealed a total success rate equal to 89%. It is also found more accurate than the latency method used in hospitals.

摘要

提出了一种用于区分视觉诱发电位(VEP)的非线性分类器。它结合了两种技术:零跟踪方法和多层网络。第一种方法包括通过自适应线性预测滤波器处理VEP数据,旨在提取合适的特征向量以输入到神经网络中。对从48名健康人和57名患者收集的105个VEP进行了分析,以测试所提出分类器的性能。使用反向传播网络获得的结果显示总成功率等于89%。还发现它比医院使用的潜伏期方法更准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验