Suppr超能文献

用于跟踪诱发电位的径向基函数网络的实时数据重用自适应学习

Real-time data-reusing adaptive learning of a radial basis function network for tracking evoked potentials.

作者信息

Qiu Wei, Chang Chunqi, Liu Wenqing, Poon Paul W F, Hu Yong, Lam F K, Hamernik Roger P, Wei Gang, Chan Francis H Y

机构信息

Auditory Research Laboratory, State University of New York, Plattsburgh, USA.

出版信息

IEEE Trans Biomed Eng. 2006 Feb;53(2):226-37. doi: 10.1109/TBME.2005.862540.

Abstract

Tracking variations in both the latency and amplitude of evoked potential (EP) is important in quantifying properties of the nervous system. Adaptive filtering is a powerful tool for tracking such variations. In this paper, a data-reusing non-linear adaptive filtering method, based on a radial basis function network (RBFN), is implemented to estimate EP. The RBFN consists of an input layer of source nodes, a single hidden layer of non-linear processing units and an output layer of linear weights. It has built-in nonlinear activation functions that allow learning of function mappings. Moreover, it produces satisfactory estimates of signals against a background noise without a priori knowledge of the signal, provided that the signal and noise are independent. In clinical situations where EP responses change rapidly, the convergence rate of the algorithm becomes a critical factor. A carefully designed data-reusing RBFN can accelerate the convergence rate markedly and, thus, enhance its performance. Both theoretical analysis and simulation results support the improved performance of our new algorithm.

摘要

追踪诱发电位(EP)潜伏期和波幅的变化对于量化神经系统特性至关重要。自适应滤波是追踪此类变化的强大工具。本文实现了一种基于径向基函数网络(RBFN)的数据重用非线性自适应滤波方法来估计EP。RBFN由源节点的输入层、非线性处理单元的单个隐藏层和线性权重的输出层组成。它具有内置的非线性激活函数,允许学习函数映射。此外,在无需信号先验知识的情况下,只要信号和噪声相互独立,它就能针对背景噪声产生令人满意的信号估计。在EP反应快速变化的临床情况下,算法的收敛速度成为关键因素。精心设计的数据重用RBFN可以显著加快收敛速度,从而提高其性能。理论分析和仿真结果均支持我们新算法的性能提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验