Suppr超能文献

基于神经网络模糊推理系统的自适应噪声消除法对视诱发电位的估计

Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system.

作者信息

Zeng Y, Zhang J, Yin H, Pan Y

机构信息

Biomedical Information Institute, Beijing University of Technology, Beijing, PR, 100022, China.

出版信息

J Med Eng Technol. 2007 May-Jun;31(3):185-90. doi: 10.1080/03091900500312876.

Abstract

Visual evoked potentials (VEPs) are time-varying signals typically buried in relatively large background noise known as the electroencephalogram (EEG). In this paper, an adaptive noise cancellation with neural network-based fuzzy inference system (NNFIS) was used and the NNFIS was carefully designed to model the VEP signal. It is assumed that VEP responses can be modelled by NNFIS with the centres of its membership functions evenly distributed over time. The weights of NNFIS are adaptively determined by minimizing the variance of the error signal using the least mean squares (LMS) algorithm. As the NNFIS is dynamic to any change of VEP, the non-stationary characteristics of VEP can be tracked. Thus, this method should be able to track the VEP. Four sets of simulated data indicate that the proposed method is appropriate to estimate VEP. A total of 150 trials are processed to demonstrate the superior performance of the proposed method.

摘要

视觉诱发电位(VEP)是一种随时间变化的信号,通常淹没在称为脑电图(EEG)的相对较大的背景噪声中。在本文中,使用了基于神经网络的模糊推理系统(NNFIS)进行自适应噪声消除,并且精心设计了NNFIS来对VEP信号进行建模。假设VEP响应可以由NNFIS建模,其隶属函数的中心随时间均匀分布。NNFIS的权重通过使用最小均方(LMS)算法最小化误差信号的方差来自适应确定。由于NNFIS对VEP的任何变化都是动态的,因此可以跟踪VEP的非平稳特性。因此,该方法应该能够跟踪VEP。四组模拟数据表明,所提出的方法适用于估计VEP。总共处理了150次试验,以证明所提出方法的优越性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验