Suppr超能文献

在没有磁共振成像(MRI)的情况下将多通道多受试者功能近红外光谱(fNIRS)数据空间配准到蒙特利尔神经研究所(MNI)空间。

Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI.

作者信息

Singh Archana K, Okamoto Masako, Dan Haruka, Jurcak Valer, Dan Ippeita

机构信息

National Food Research Institute, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.

出版信息

Neuroimage. 2005 Oct 1;27(4):842-51. doi: 10.1016/j.neuroimage.2005.05.019.

Abstract

The registration of functional brain data to the common brain space offers great advantages for inter-modal data integration and sharing. However, this is difficult to achieve in functional near-infrared spectroscopy (fNIRS) because fNIRS data are primary obtained from the head surface and lack structural information of the measured brain. Therefore, in our previous articles, we presented a method for probabilistic registration of fNIRS data to the standard Montreal Neurological Institute (MNI) template through international 10-20 system without using the subject's magnetic resonance image (MRI). In the current study, we demonstrate our method with a new statistical model to facilitate group studies and provide information on different components of variability. We adopt an analysis similar to the single-factor one-way classification analysis of variance based on random effects model to examine the variability involved in our improvised method of probabilistic registration of fNIRS data. We tested this method by registering head surface data of twelve subjects to seventeen reference MRI data sets and found that the standard deviation in probabilistic registration thus performed for given head surface points is approximately within the range of 4.7 to 7.0 mm. This means that, if the spatial registration error is within an acceptable tolerance limit, it is possible to perform multi-subject fNIRS analysis to make inference at the population level and to provide information on positional variability in the population, even when subjects' MRIs are not available. In essence, the current method enables the multi-subject fNIRS data to be presented in the MNI space with clear description of associated positional variability. Such data presentation on a common platform, will not only strengthen the validity of the population analysis of fNIRS studies, but will also facilitate both intra- and inter-modal data sharing among the neuroimaging community.

摘要

将功能性脑数据注册到通用脑空间为多模态数据集成和共享提供了巨大优势。然而,在功能性近红外光谱(fNIRS)中实现这一点却很困难,因为fNIRS数据主要是从头部表面获取的,缺乏被测大脑的结构信息。因此,在我们之前的文章中,我们提出了一种方法,通过国际10 - 20系统将fNIRS数据概率性注册到标准的蒙特利尔神经病学研究所(MNI)模板,而无需使用受试者的磁共振图像(MRI)。在当前研究中,我们用一种新的统计模型展示了我们的方法,以促进群体研究并提供关于不同变异成分的信息。我们采用了一种类似于基于随机效应模型的单因素单向分类方差分析的分析方法,来检验我们改进的fNIRS数据概率性注册方法中涉及的变异性。我们通过将12名受试者的头部表面数据注册到17个参考MRI数据集来测试该方法,发现对于给定的头部表面点,如此进行的概率性注册中的标准差大约在4.7至7.0毫米范围内。这意味着,如果空间注册误差在可接受的公差范围内,即使受试者没有MRI,也有可能进行多受试者fNIRS分析,以便在群体水平上进行推断并提供关于群体中位置变异性的信息。本质上,当前方法能够将多受试者fNIRS数据呈现在MNI空间中,并清晰描述相关的位置变异性。在一个通用平台上进行这样的数据呈现,不仅会加强fNIRS研究群体分析的有效性,还将促进神经成像社区内部和多模态数据的共享。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验