Suppr超能文献

用于计算解剖学的无偏微分同胚图谱构建

Unbiased diffeomorphic atlas construction for computational anatomy.

作者信息

Joshi S, Davis Brad, Jomier Matthieu, Gerig Guido

机构信息

Department of Radiation Oncology, University of North Carolina, USA.

出版信息

Neuroimage. 2004;23 Suppl 1:S151-60. doi: 10.1016/j.neuroimage.2004.07.068.

Abstract

Construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and help tissue and object segmentation via registration of anatomical labels. Common techniques often include the choice of a template image, which inherently introduces a bias. This paper describes a new method for unbiased construction of atlases in the large deformation diffeomorphic setting. A child neuroimaging autism study serves as a driving application. There is lack of normative data that explains average brain shape and variability at this early stage of development. We present work in progress toward constructing an unbiased MRI atlas of 2 years of children and the building of a probabilistic atlas of anatomical structures, here the caudate nucleus. Further, we demonstrate the segmentation of new subjects via atlas mapping. Validation of the methodology is performed by comparing the deformed probabilistic atlas with existing manual segmentations.

摘要

构建人口图谱是医学图像分析中的一个关键问题,尤其是在脑图谱方面。大量图像被映射到一个共同的坐标系中,以研究群体内部的变异性和群体间的差异,提供功能位点的体素级映射,并通过解剖标签的配准帮助进行组织和对象分割。常用技术通常包括选择模板图像,这本身就会引入偏差。本文描述了一种在大变形微分同胚设置下无偏差构建图谱的新方法。一项儿童神经影像学自闭症研究作为驱动应用。在这个发育早期阶段,缺乏能够解释平均脑形状和变异性的规范数据。我们展示了在构建2岁儿童无偏差MRI图谱以及构建解剖结构(此处为尾状核)概率图谱方面的进展。此外,我们通过图谱映射展示了新受试者的分割。通过将变形后的概率图谱与现有的手动分割结果进行比较来对该方法进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验