Untaroiu Alexandrina, Throckmorton Amy L, Patel Sonna M, Wood Houston G, Allaire Paul E, Olsen Don B
Mechanical and Aerospace Engineering Department, Virginia Artificial Heart Institute, University of Virginia, Charlottesville, VA 22904-4746, USA.
Artif Organs. 2005 Jul;29(7):581-91. doi: 10.1111/j.1525-1594.2005.29095.x.
Thousands of adult cardiac failure patients may benefit from the availability of an effective, long-term ventricular assist device (VAD). We have developed a fully implantable, axial flow VAD (LEV-VAD) with a magnetically levitated impeller as a viable option for these patients. This pump's streamlined and unobstructed blood flow path provides its unique design and facilitates continuous washing of all surfaces contacting blood. One internal fluid contacting region, the diffuser, is extremely important to the pump's ability to produce adequate pressure but is challenging to manufacture, depending on the complex blade geometries. This study examines the influence of the diffuser on the overall LEV-VAD performance. A combination of theoretical analyses, computational fluid (CFD) simulations, and experimental testing was performed for three different diffuser models: six-bladed, three-bladed, and no-blade configuration. The diffuser configurations were computationally and experimentally investigated for flow rates of 2-10 L/min at rotational speeds of 5000-8000 rpm. For these operating conditions, CFD simulations predicted the LEV-VAD to deliver physiologic pressures with hydraulic efficiencies of 15-32%. These numerical performance results generally agreed within 10% of the experimental measurements over the entire range of rotational speeds tested. Maximum scalar stress levels were estimated to be 450 Pa for 6 L/min at 8000 rpm along the blade tip surface of the impeller. Streakline analysis demonstrated maximum fluid residence times of 200 ms with a majority of particles exiting the pump in 80 ms. Axial fluid forces remained well within counter force generation capabilities of the magnetic suspension design. The no-bladed configuration generated an unacceptable hydraulic performance. The six-diffuser-blade model produced a flow rate of 6 L/min against 100 mm Hg for 6000 rpm rotational speed, while the three-diffuser-blade model produced the same flow rate and pressure rise for a rotational speed of 6500 rpm. The three-bladed diffuser configuration was selected over the six-bladed, requiring only an incremental adjustment in revolution per minute to compensate for and ease manufacturing constraints. The acceptable results of the computational simulations and experimental testing encourage final prototype manufacturing for acute and chronic animal studies.
数千名成年心力衰竭患者可能会受益于一种有效的长期心室辅助装置(VAD)。我们开发了一种完全可植入的轴流VAD(LEV-VAD),其叶轮采用磁悬浮技术,为这些患者提供了一个可行的选择。该泵的流线型且无阻碍的血流路径赋予了其独特的设计,并有助于持续冲洗所有与血液接触的表面。一个内部流体接触区域,即扩压器,对于泵产生足够压力的能力极为重要,但由于其复杂的叶片几何形状,制造起来具有挑战性。本研究考察了扩压器对LEV-VAD整体性能的影响。针对三种不同的扩压器模型:六叶片、三叶片和无叶片配置,进行了理论分析、计算流体力学(CFD)模拟和实验测试的组合研究。在5000 - 8000转/分钟的转速下,对2 - 10升/分钟的流量,对扩压器配置进行了计算和实验研究。对于这些运行条件,CFD模拟预测LEV-VAD可提供生理压力,水力效率为15% - 32%。在整个测试转速范围内,这些数值性能结果与实验测量值总体上在10%以内相符。在8000转/分钟、流量为6升/分钟时,沿叶轮叶片尖端表面估计最大标量应力水平为450帕。流线分析表明最大流体停留时间为200毫秒,大多数颗粒在80毫秒内离开泵。轴向流体力仍完全在磁悬浮设计的反力产生能力范围内。无叶片配置产生了不可接受的水力性能。六扩压器叶片模型在6000转/分钟的转速下产生了6升/分钟的流量,对抗100毫米汞柱的压力,而三扩压器叶片模型在6500转/分钟的转速下产生了相同的流量和压力升高。相较于六叶片扩压器,选择了三叶片扩压器配置,仅需对每分钟转数进行增量调整,以补偿并缓解制造限制。计算模拟和实验测试的可接受结果鼓励进行最终原型制造,用于急性和慢性动物研究。