Knowles Negar G, Miyashita Yuko, Usui Marcia L, Marshall Andrew J, Pirrone Annalisa, Hauch Kip D, Ratner Buddy D, Underwood Robert A, Fleckman Philip, Olerud John E
Department of Medicine (Dermatology), University of Washington, Seattle, Washington 98195-6524, USA.
J Biomed Mater Res A. 2005 Sep 1;74(3):482-8. doi: 10.1002/jbm.a.30384.
Percutaneous devices are indispensable in modern medicine, yet complications from their use result in significant morbidity, mortality, and cost. Bacterial biofilm at the device exit site accounts for most infections in short-term devices. We hypothesize that advanced biomaterials can be developed that facilitate attachment of skin cells to percutaneous devices, forming a seal to preclude bacterial invasion. To study the skin/biomaterial interface systematically, we first identified biomaterials with physical properties compatible with histological processing of skin. Second, we developed an organ culture system to study skin response to implants. Organ cultures implanted with porous poly(2-hydroxyethyl methacrylate) [poly(HEMA)] or polytetrafluoroethylene (PTFE) could easily be evaluated histologically with preservation of the skin/biomaterial interface. Epithelial cells migrated down the cut edges of the biomaterial in a pattern seen in marsupialization of percutaneous devices in vivo. This in vitro model maintains skin viability and allows histologic evaluation of the skin/biomaterial interface, making this a useful, inexpensive test-bed for studies of epidermal attachment to modified biomaterials.
经皮设备在现代医学中不可或缺,但其使用引发的并发症会导致严重的发病率、死亡率和成本。设备出口部位的细菌生物膜是短期设备中大多数感染的原因。我们假设可以开发先进的生物材料,促进皮肤细胞附着于经皮设备,形成密封以防止细菌入侵。为了系统地研究皮肤/生物材料界面,我们首先确定了具有与皮肤组织学处理兼容的物理性质的生物材料。其次,我们开发了一种器官培养系统来研究皮肤对植入物的反应。植入多孔聚(甲基丙烯酸2-羟乙酯)[聚(HEMA)]或聚四氟乙烯(PTFE)的器官培养物可以很容易地通过组织学方法进行评估,同时保留皮肤/生物材料界面。上皮细胞沿着生物材料的切割边缘迁移,其模式与体内经皮设备袋形缝术所见相同。这种体外模型保持皮肤活力,并允许对皮肤/生物材料界面进行组织学评估,使其成为研究表皮附着于改性生物材料的有用且廉价的试验台。