Suppr超能文献

单个海马树突棘中NMDA受体亚基依赖性的[Ca2+]信号传导

NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines.

作者信息

Sobczyk Aleksander, Scheuss Volker, Svoboda Karel

机构信息

Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

出版信息

J Neurosci. 2005 Jun 29;25(26):6037-46. doi: 10.1523/JNEUROSCI.1221-05.2005.

Abstract

Ca2+ influx through synaptic NMDA receptors (NMDA-Rs) triggers a variety of adaptive cellular processes. To probe NMDA-R-mediated [Ca2+] signaling, we used two-photon glutamate uncaging to stimulate NMDA-Rs on individual dendritic spines of CA1 pyramidal neurons in rat brain slices. We measured NMDA-R currents at the soma and NMDA-R-mediated [Ca2+] transients in stimulated spines (Delta[Ca2+]). Uncaging-evoked NMDA-R current amplitudes were independent of the size of the stimulated spine, implying that smaller spines contain higher densities of functional NMDA-Rs. The ratio of Delta[Ca2+] over NMDA-R current was highly variable (factor of 10) across spines, especially for small spines. These differences were not explained by heterogeneity in spine sizes or diffusional coupling between spines and their parent dendrites. In addition, we find that small spines have NMDA-R currents that are sensitive to NMDA-R NR2B subunit-specific antagonists. With block of NR2B-containing receptors, the range of Delta[Ca2+]/NMDA-R current ratios and their average value were much reduced. Our data suggest that individual spines can regulate the subunit composition of their NMDA-Rs and the effective fractional Ca2+ current through these receptors.

摘要

通过突触N-甲基-D-天冬氨酸受体(NMDA-Rs)的Ca2+内流触发了多种适应性细胞过程。为了探究NMDA-R介导的[Ca2+]信号传导,我们使用双光子谷氨酸解笼来刺激大鼠脑片CA1锥体神经元单个树突棘上的NMDA-Rs。我们测量了胞体处的NMDA-R电流以及受刺激树突棘中NMDA-R介导的[Ca2+]瞬变(Δ[Ca2+])。解笼诱发的NMDA-R电流幅度与受刺激树突棘的大小无关,这意味着较小的树突棘含有更高密度的功能性NMDA-Rs。跨树突棘的Δ[Ca2+]与NMDA-R电流的比值变化很大(达10倍),尤其是对于小树突棘。这些差异无法用树突棘大小的异质性或树突棘与其母树突之间的扩散耦合来解释。此外,我们发现小树突棘具有对NMDA-R NR2B亚基特异性拮抗剂敏感的NMDA-R电流。在阻断含NR2B的受体后,Δ[Ca2+]/NMDA-R电流比值的范围及其平均值均大幅降低。我们的数据表明,单个树突棘可以调节其NMDA-Rs的亚基组成以及通过这些受体的有效Ca2+电流分数。

相似文献

1
NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines.
J Neurosci. 2005 Jun 29;25(26):6037-46. doi: 10.1523/JNEUROSCI.1221-05.2005.
2
Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current.
Neuron. 2007 Jan 4;53(1):17-24. doi: 10.1016/j.neuron.2006.11.016.
3
A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
J Neurophysiol. 1992 Dec;68(6):2248-59. doi: 10.1152/jn.1992.68.6.2248.
4
Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.
J Neurosci. 2015 Sep 2;35(35):12303-8. doi: 10.1523/JNEUROSCI.4289-14.2015.
5
Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites.
Neuron. 2005 May 19;46(4):609-22. doi: 10.1016/j.neuron.2005.03.015.
7
SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines.
Nat Neurosci. 2005 May;8(5):642-9. doi: 10.1038/nn1449. Epub 2005 Apr 24.

引用本文的文献

1
Contribution of individual excitatory synapses on dendritic spines to electrical signaling.
Front Neurosci. 2025 Jul 29;19:1620654. doi: 10.3389/fnins.2025.1620654. eCollection 2025.
3
Kv4.2 Regulates Basal Synaptic Strength by Inhibiting R-Type Calcium Channels in the Hippocampus.
J Neurosci. 2025 Mar 19;45(12):e0444242025. doi: 10.1523/JNEUROSCI.0444-24.2025.
7
Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex.
Nat Commun. 2024 Feb 16;15(1):1368. doi: 10.1038/s41467-024-45734-w.
8
Memory persistence: from fundamental mechanisms to translational opportunities.
Transl Psychiatry. 2024 Feb 14;14(1):98. doi: 10.1038/s41398-024-02808-z.
10
Introduction: What Are Dendritic Spines?
Adv Neurobiol. 2023;34:1-68. doi: 10.1007/978-3-031-36159-3_1.

本文引用的文献

1
Transient and persistent dendritic spines in the neocortex in vivo.
Neuron. 2005 Jan 20;45(2):279-91. doi: 10.1016/j.neuron.2005.01.003.
2
State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons.
Neuron. 2004 Oct 28;44(3):483-93. doi: 10.1016/j.neuron.2004.10.013.
3
Structural basis of long-term potentiation in single dendritic spines.
Nature. 2004 Jun 17;429(6993):761-6. doi: 10.1038/nature02617. Epub 2004 Jun 9.
4
NR2B-containing receptors mediate cross talk among hippocampal synapses.
J Neurosci. 2004 May 19;24(20):4767-77. doi: 10.1523/JNEUROSCI.0364-04.2004.
5
Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity.
Science. 2004 May 14;304(5673):1021-4. doi: 10.1126/science.1096615.
6
The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines.
J Neurosci. 2004 Feb 25;24(8):2054-64. doi: 10.1523/JNEUROSCI.5066-03.2004.
7
Imaging calcium concentration dynamics in small neuronal compartments.
Sci STKE. 2004 Feb 3;2004(219):pl5. doi: 10.1126/stke.2192004pl5.
8
Plasticity of calcium channels in dendritic spines.
Nat Neurosci. 2003 Sep;6(9):948-55. doi: 10.1038/nn1112.
10
Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation.
Curr Opin Neurobiol. 2003 Jun;13(3):366-71. doi: 10.1016/s0959-4388(03)00073-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验