Suppr超能文献

海马体CA1锥体神经元树突中N-甲基-D-天冬氨酸受体介导的活动模型。

A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.

作者信息

Pongrácz F, Poolos N P, Kocsis J D, Shepherd G M

机构信息

Section of Neurobiology, Yale University School of Medicine, New Haven 06510.

出版信息

J Neurophysiol. 1992 Dec;68(6):2248-59. doi: 10.1152/jn.1992.68.6.2248.

Abstract
  1. The role of synaptic activation of NMDA (N-methyl-D-aspartate) receptor-mediated conductances on CA1 hippocampal pyramidal cells in short-term excitability changes was studied with the use of a computational model. Model parameters were based on experimental recordings from dendrites and somata and previous hippocampal simulations. Representation of CA1 neurons included NMDA and non-NMDA excitatory dendritic synapses, dendritic and somatic inhibition, five intrinsic membrane conductances, and provision for activity-dependent intracellular and extracellular ion concentration changes. 2. The model simulated somatic and dendritic potentials recorded experimentally. The characteristic CA1 spike afterdepolarization was a consequence of the longitudinal spread of dendritic charge, reactivation of slow Ca(2+)-dependent K+ conductances, slow synaptic processes (NMDA-dependent depolarizing and gamma-aminobutyric acid-mediated hyperpolarizing currents) and was sensitive to extracellular potassium accumulation. Calcium currents were found to be less important in generating the spike afterdepolarization. 3. Repetitive activity was influenced by the cumulative activation of the NMDA-mediated synaptic conductances, the frequency-dependent depression of inhibitory synaptic responses, and a shift in the potassium reversal potential. NMDA receptor activation produced a transient potentiation of the excitatory postsynaptic potential (EPSP). The frequency dependence of EPSP potentiation was similar to the experimental data, reaching a maximal value near 10 Hz. 4. Although the present model did not have compartments for dendritic spines, Ca2+ accumulation was simulated in a restricted space near the intracellular surface of the dendritic membrane. The simulations demonstrated that the Ca2+ component of the NMDA-operated synaptic current can be a significant factor in increasing the Ca2+ concentration at submembrane regions, even in the absence of Ca2+ spikes. 5. Elevation of the extracellular K+ concentration enhanced the dendritic synaptic response during repetitive activity and led to an increase in intracellular Ca2+ levels. This increase in dendritic excitability was partly mediated by NMDA receptor-mediated conductances. 6. Blockade of Ca(2+)-sensitive K+ conductances in the dendrites increased the size of EPSPs leading to a facilitation of dendritic and somatic spike activity and increased [Ca2+]i. NMDA receptor-mediated conductances appeared as an amplifying component in this mechanism, activated by the relatively depolarized membrane potential. 7. The results suggest that dendritic NMDA receptors, by virtue of their voltage-dependency, can interact with a number of voltage-sensitive conductances to increase the dendritic excitatory response during periods of repetitive synaptic activation. These findings support experimental results that implicate NMDA receptor-mediated conductances in the short-term response plasticity of the CA1 hippocampal pyramidal neuron.
摘要
  1. 利用计算模型研究了NMDA(N-甲基-D-天冬氨酸)受体介导的电导在CA1海马锥体细胞突触激活对短期兴奋性变化中的作用。模型参数基于来自树突和胞体的实验记录以及先前的海马模拟。CA1神经元的模型包括NMDA和非NMDA兴奋性树突突触、树突和胞体抑制、五种内在膜电导,以及活动依赖性细胞内和细胞外离子浓度变化的设定。2. 该模型模拟了实验记录的胞体和树突电位。CA1特征性的锋电位后去极化是树突电荷纵向扩散、慢钙依赖性钾电导重新激活、缓慢突触过程(NMDA依赖性去极化电流和γ-氨基丁酸介导的超极化电流)的结果,并且对细胞外钾积累敏感。发现钙电流在产生锋电位后去极化中不太重要。3. 重复活动受NMDA介导的突触电导的累积激活、抑制性突触反应的频率依赖性抑制以及钾反转电位的改变影响。NMDA受体激活产生兴奋性突触后电位(EPSP)的短暂增强。EPSP增强的频率依赖性与实验数据相似,在10Hz附近达到最大值。4. 尽管当前模型没有树突棘的区室,但在树突膜细胞内表面附近的有限空间中模拟了钙积累。模拟表明,即使在没有钙峰的情况下,NMDA操作的突触电流的钙成分也可能是增加膜下区域钙浓度的重要因素。5. 细胞外钾浓度升高增强了重复活动期间的树突突触反应,并导致细胞内钙水平升高。树突兴奋性的这种增加部分由NMDA受体介导的电导介导。6. 阻断树突中钙敏感的钾电导增加了EPSP的大小,导致树突和胞体锋电位活动的易化以及细胞内钙离子浓度增加。NMDA受体介导的电导在该机制中表现为放大成分,由相对去极化的膜电位激活。7. 结果表明,树突NMDA受体凭借其电压依赖性,可在重复突触激活期间与多种电压敏感电导相互作用,以增加树突兴奋性反应。这些发现支持了将NMDA受体介导的电导与CA1海马锥体细胞的短期反应可塑性相关联的实验结果。

相似文献

1
A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
J Neurophysiol. 1992 Dec;68(6):2248-59. doi: 10.1152/jn.1992.68.6.2248.
2
Dendritic action potentials activated by NMDA receptor-mediated EPSPs in CA1 hippocampal pyramidal cells.
Brain Res. 1990 Aug 6;524(2):342-6. doi: 10.1016/0006-8993(90)90714-m.
3
Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
J Physiol. 1998 Mar 1;507 ( Pt 2)(Pt 2):441-62. doi: 10.1111/j.1469-7793.1998.441bt.x.
6
7
Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells.
J Neurophysiol. 1996 Oct;76(4):2181-91. doi: 10.1152/jn.1996.76.4.2181.
8
Dendritic electrogenesis in rat hippocampal CA1 pyramidal neurons: functional aspects of Na+ and Ca2+ currents in apical dendrites.
Hippocampus. 1996;6(1):79-95. doi: 10.1002/(SICI)1098-1063(1996)6:1<79::AID-HIPO13>3.0.CO;2-H.
10
Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.
J Neurophysiol. 2007 May;97(5):3242-55. doi: 10.1152/jn.00422.2006. Epub 2007 Feb 28.

引用本文的文献

2
mTORC1 Is a Local, Postsynaptic Voltage Sensor Regulated by Positive and Negative Feedback Pathways.
Front Cell Neurosci. 2017 May 30;11:152. doi: 10.3389/fncel.2017.00152. eCollection 2017.
4
A dynamical model of fast cortical reorganization.
J Comput Neurosci. 2004 Mar-Apr;16(2):177-201. doi: 10.1023/B:JCNS.0000014109.83574.78.
5
GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro.
J Physiol. 2002 May 15;541(Pt 1):123-37. doi: 10.1113/jphysiol.2001.016063.
7
Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation.
J Neurosci. 1998 Sep 15;18(18):7118-26. doi: 10.1523/JNEUROSCI.18-18-07118.1998.
8
Prostaglandin F2alpha is required for NMDA receptor-mediated induction of c-fos mRNA in dentate gyrus neurons.
J Neurosci. 1997 Jan 1;17(1):117-24. doi: 10.1523/JNEUROSCI.17-01-00117.1997.
10

本文引用的文献

1
Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices.
J Physiol. 1980 Aug;305:197-213. doi: 10.1113/jphysiol.1980.sp013358.
2
Steady-state electrotonic analysis of intracellularly stained hippocampal neurons.
J Neurophysiol. 1980 Jul;44(1):184-99. doi: 10.1152/jn.1980.44.1.184.
3
Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro.
J Physiol. 1982 Jul;328:105-23. doi: 10.1113/jphysiol.1982.sp014255.
4
Simulation of intrinsic bursting in CA3 hippocampal neurons.
Neuroscience. 1982 May;7(5):1233-42. doi: 10.1016/0306-4522(82)91130-7.
5
Analysis of potassium dynamics in mammalian brain tissue.
J Physiol. 1983 Feb;335:393-426. doi: 10.1113/jphysiol.1983.sp014541.
7
Synaptic control of excitability in isolated dendrites of hippocampal neurons.
J Neurosci. 1984 Jan;4(1):217-27. doi: 10.1523/JNEUROSCI.04-01-00217.1984.
9
Magnesium gates glutamate-activated channels in mouse central neurones.
Nature. 1984;307(5950):462-5. doi: 10.1038/307462a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验