Suppr超能文献

涨落耗散定理与学习模型

Fluctuation-dissipation theorem and models of learning.

作者信息

Nemenman Ilya

机构信息

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA. ilya@

出版信息

Neural Comput. 2005 Sep;17(9):2006-33. doi: 10.1162/0899766054322982.

Abstract

Advances in statistical learning theory have resulted in a multitude of different designs of learning machines. But which ones are implemented by brains and other biological information processors? We analyze how various abstract Bayesian learners perform on different data and argue that it is difficult to determine which learning-theoretic computation is performed by a particular organism using just its performance in learning a stationary target (learning curve). Based on the fluctuation-dissipation relation in statistical physics, we then discuss a different experimental setup that might be able to solve the problem.

摘要

统计学习理论的进展催生了众多不同设计的学习机器。但哪些是由大脑和其他生物信息处理器实现的呢?我们分析了各种抽象贝叶斯学习者在不同数据上的表现,并认为仅根据其在学习固定目标(学习曲线)中的表现,很难确定特定生物体执行了哪种学习理论计算。基于统计物理学中的涨落耗散关系,我们随后讨论了一种可能能够解决该问题的不同实验设置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验