Suppr超能文献

视觉引导抓握的校准由纠错学习和内部动力学驱动。

Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

作者信息

Cheng Sen, Sabes Philip N

机构信息

Sloan-Swartz Center for Theoretical Neurobiology, W. M. Keck Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, California 94143-0444, USA.

出版信息

J Neurophysiol. 2007 Apr;97(4):3057-69. doi: 10.1152/jn.00897.2006. Epub 2007 Jan 3.

Abstract

The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

摘要

在视觉引导的伸手动作中,感觉运动校准会根据手部视觉反馈的随机变化在每次试验中发生改变。我们表明,一个简单的线性动力系统足以对这种适应性过程的动力学进行建模。在这个模型中,一个内部变量代表感觉运动校准的当前状态。这种状态的变化由误差反馈信号驱动,误差反馈信号包括视觉感知到的伸手误差、视觉反馈中的人为偏移或两者兼有。尽管受试者并未意识到视觉偏移,但他们会对每次动作中观察到的误差进行大于或等于20%的校正。适应状态还由内部动力学驱动,内部动力学包括衰减回到基线状态和一个“状态噪声”过程。状态噪声包括直接影响适应状态的任何变异性来源,例如感觉反馈处理中的变异性、驱动学习的计算或状态的维持。这种噪声在各次试验中在状态中累积,在伸手误差序列中产生时间相关性。这些相关性使我们能够将状态噪声与感觉运动性能噪声区分开来,感觉运动性能噪声在每次试验中独立地由感觉运动通路中的随机波动产生。我们表明,这两种噪声源对运动变异性的总体大小贡献相当。最后,用随机反馈偏移测量的适应动力学推广到恒定反馈偏移的情况,从而可以将我们的结果与更传统的分组暴露实验进行直接比较。

相似文献

1
Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.
J Neurophysiol. 2007 Apr;97(4):3057-69. doi: 10.1152/jn.00897.2006. Epub 2007 Jan 3.
2
The role of the cross-sensory error signal in visuomotor adaptation.
Exp Brain Res. 2013 Jul;228(3):313-25. doi: 10.1007/s00221-013-3564-7. Epub 2013 May 26.
3
Individual differences in proprioception predict the extent of implicit sensorimotor adaptation.
J Neurophysiol. 2021 Apr 1;125(4):1307-1321. doi: 10.1152/jn.00585.2020. Epub 2021 Mar 3.
4
When adaptive control fails: Slow recovery of reduced rapid online control during reaching under reversed vision.
Vision Res. 2015 May;110(Pt B):155-65. doi: 10.1016/j.visres.2014.08.021. Epub 2014 Sep 16.
5
Trial-by-trial transformation of error into sensorimotor adaptation changes with environmental dynamics.
J Neurophysiol. 2007 Sep;98(3):1392-404. doi: 10.1152/jn.00196.2007. Epub 2007 Jul 5.
6
Dissociating the Influence of Limb Posture and Visual Feedback Shifts on the Adaptation to Novel Movement Dynamics.
Neuroscience. 2024 Jun 21;549:24-41. doi: 10.1016/j.neuroscience.2024.02.033. Epub 2024 Mar 13.
8
The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System.
J Neurosci. 2016 Apr 27;36(17):4832-45. doi: 10.1523/JNEUROSCI.0159-16.2016.
9
Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.
Neuropsychologia. 2014 Mar;55:15-24. doi: 10.1016/j.neuropsychologia.2013.09.021. Epub 2013 Sep 20.
10
Modeling sensorimotor learning with linear dynamical systems.
Neural Comput. 2006 Apr;18(4):760-93. doi: 10.1162/089976606775774651.

引用本文的文献

1
Modeling the function of episodic memory in spatial learning.
Front Psychol. 2023 Apr 17;14:1160648. doi: 10.3389/fpsyg.2023.1160648. eCollection 2023.
3
Individual sensorimotor adaptation characteristics are independent across orofacial speech movements and limb reaching movements.
J Neurophysiol. 2022 Sep 1;128(3):696-710. doi: 10.1152/jn.00167.2022. Epub 2022 Aug 10.
6
Emergence of complex dynamics of choice due to repeated exposures to extinction learning.
Anim Cogn. 2021 Nov;24(6):1279-1297. doi: 10.1007/s10071-021-01521-4. Epub 2021 May 12.
7
Of mice and men: Speech sound acquisition as discriminative learning from prediction error, not just statistical tracking.
Cognition. 2020 Apr;197:104081. doi: 10.1016/j.cognition.2019.104081. Epub 2020 Jan 2.
8
A generative learning model for saccade adaptation.
PLoS Comput Biol. 2019 Aug 9;15(8):e1006695. doi: 10.1371/journal.pcbi.1006695. eCollection 2019 Aug.
9
Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator.
PLoS Comput Biol. 2018 Dec 26;14(12):e1006501. doi: 10.1371/journal.pcbi.1006501. eCollection 2018 Dec.
10
Individual Differences in Motor Noise and Adaptation Rate Are Optimally Related.
eNeuro. 2018 Jul 31;5(4). doi: 10.1523/ENEURO.0170-18.2018. eCollection 2018 Jul-Aug.

本文引用的文献

1
Interacting adaptive processes with different timescales underlie short-term motor learning.
PLoS Biol. 2006 Jun;4(6):e179. doi: 10.1371/journal.pbio.0040179. Epub 2006 May 23.
2
Long-lasting aftereffect of a single prism adaptation: shifts in vision and proprioception are independent.
Exp Brain Res. 2006 Aug;173(3):415-24. doi: 10.1007/s00221-006-0381-2. Epub 2006 Mar 22.
3
Modeling sensorimotor learning with linear dynamical systems.
Neural Comput. 2006 Apr;18(4):760-93. doi: 10.1162/089976606775774651.
4
Automatic drive of limb motor plasticity.
J Cogn Neurosci. 2006 Jan;18(1):75-83. doi: 10.1162/089892906775250058.
5
A sensory source for motor variation.
Nature. 2005 Sep 15;437(7057):412-6. doi: 10.1038/nature03961.
6
Fluctuation-dissipation theorem and models of learning.
Neural Comput. 2005 Sep;17(9):2006-33. doi: 10.1162/0899766054322982.
7
Applications of prism adaptation: a tutorial in theory and method.
Neurosci Biobehav Rev. 2005 May;29(3):431-44. doi: 10.1016/j.neubiorev.2004.12.004.
8
Flexible strategies for sensory integration during motor planning.
Nat Neurosci. 2005 Apr;8(4):490-7. doi: 10.1038/nn1427. Epub 2005 Mar 27.
9
Adaptive mechanisms in perceptual-motor coordination: components of prism adaptation.
J Mot Behav. 1988 Sep;20(3):242-54. doi: 10.1080/00222895.1988.10735444.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验