Suppr超能文献

用于图像理解的组件优化:一种贝叶斯方法。

Component optimization for image understanding: a Bayesian approach.

作者信息

Cheng Li, Caelli Terry, Sanchez-Azofeifa Arturo

机构信息

Department of Computing Science, University of Alberta, Edmonton, Canada.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):684-93. doi: 10.1109/TPAMI.2006.92.

Abstract

In this paper, the optimizations of three fundamental components of image understanding: segmentation/annotation, 3D sensing (stereo) and 3D fitting, are posed and integrated within a Bayesian framework. This approach benefits from recent advances in statistical learning which have resulted in greatly improved flexibility and robustness. The first two components produce annotation (region labeling) and depth maps for the input images, while the third module integrates and resolves the inconsistencies between region labels and depth maps to fit most likely 3D models. To illustrate the application of these ideas, we have focused on the difficult problem of fitting individual tree models to tree stands which is a major challenge for vision-based forestry inventory systems.

摘要

在本文中,提出了图像理解三个基本组件的优化方法:分割/标注、3D传感(立体视觉)和3D拟合,并将其集成在贝叶斯框架内。这种方法受益于统计学习的最新进展,这些进展极大地提高了灵活性和鲁棒性。前两个组件为输入图像生成标注(区域标记)和深度图,而第三个模块整合并解决区域标记和深度图之间的不一致,以拟合最可能的3D模型。为了说明这些想法的应用,我们专注于将单个树木模型拟合到林分的难题,这是基于视觉的林业清查系统面临的一项重大挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验