Helmreich E J
Department of Physiological Chemistry, University of Würzburg School of Medicine, FRG.
Biofactors. 1992 Jan;3(3):159-72.
A mechanism for the phosphorylase reaction is proposed which offers a plausible explanation for the essential role of pyridoxal 5'-phosphate in glycogen phosphorylases: in the forward direction, phosphorolysis of alpha-1,4-glycosidic bonds in oligo- or polysaccharides is started by protonation of the glycosidic oxygen by the substrate orthophosphate followed by stabilization of the incipient oxocarbonium ion and subsequent covalent binding to form alpha-glucose 1-phosphate. In the reverse direction, protonation of the phosphate of glucose 1-phosphate destabilizes the glycosidic bond and promotes formation of a glucosyl oxocarbonium ion-phosphate anion pair. In the subsequent step the phosphate anion facilitates the nucleophilic attack of a terminal glucosyl residue on the carbonium ion bringing about alpha-1,4-glycosidic bond formation and primer elongation. Both in the forward and reverse reactions, the phosphate of the cofactor pyridoxal 5'-phosphate acts as a general acid (PL-OPO3H- or PL-OPO3(2-) and protonates the substrate phosphate functioning as proton shuttle. Thus in glycogen phosphorylases, phosphates which directly interact with each other have replaced a pair of amino acid carboxyl groups functioning in catalysis of carbohydrases.
本文提出了一种磷酸化酶反应机制,该机制为磷酸吡哆醛在糖原磷酸化酶中的重要作用提供了合理的解释:在正向反应中,寡糖或多糖中α-1,4-糖苷键的磷酸解首先由底物正磷酸盐使糖苷氧质子化,随后使初生的氧鎓离子稳定,并通过共价结合形成α-葡萄糖1-磷酸。在逆向反应中,葡萄糖1-磷酸的磷酸质子化使糖苷键不稳定,并促进形成葡萄糖基氧鎓离子-磷酸阴离子对。在随后的步骤中,磷酸阴离子促进末端葡萄糖基残基对碳鎓离子的亲核攻击,从而形成α-1,4-糖苷键并使引物延长。在正向和逆向反应中,辅因子磷酸吡哆醛的磷酸均作为广义酸(PL-OPO3H-或PL-OPO3(2-)),使作为质子穿梭体的底物磷酸质子化。因此,在糖原磷酸化酶中,直接相互作用的磷酸盐取代了在碳水化合物酶催化中起作用的一对氨基酸羧基。