Suppr超能文献

优化用于烟气脱硫的粉煤灰基吸附剂的比表面积。

Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization.

作者信息

Lee K T, Bhatia S, Mohamed A R, Chu K H

机构信息

School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

出版信息

Chemosphere. 2006 Jan;62(1):89-96. doi: 10.1016/j.chemosphere.2005.03.094. Epub 2005 Jul 5.

Abstract

High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.

摘要

用于烟气脱硫的高性能吸附剂可通过粉煤灰、硫酸钙和氧化钙的水合作用合成。一般来说,较高的脱硫活性与较高的吸附剂表面积相关。因此,吸附剂合成的一个主要目标是通过优化水合条件使吸附剂表面积最大化。这项工作基于统计实验设计以及神经网络和遗传算法这两个人工智能技术,提出了一种吸附剂合成的集成建模与优化方法。在该方法的第一步中,使用全因子设计评估了三个水合变量对吸附剂表面积的主要和交互作用。本研究关注的水合变量是水合时间、粉煤灰量和硫酸钙量,所研究的水平分别为4 - 32小时、5 - 15克和0 - 12克。在第二步中,使用神经网络对三个水合变量与吸附剂表面积之间关系进行建模。在最后一步中使用遗传算法对所得神经网络模型的输入空间进行优化。根据这种集成建模与优化方法,在固定水合时间为10小时的水合过程中,将13.1克粉煤灰和5.5克硫酸钙与100毫升水和5克氧化钙混合,可获得62.2平方米/克的最佳吸附剂表面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验