Suppr超能文献

利用响应面和神经网络模型优化稻壳灰(RHA)/CaO/CeO2 吸附剂预测 SO2/NO 吸附容量的参数。

Parameters optimization of rice husk ash (RHA)/CaO/CeO2 sorbent for predicting SO2/NO sorption capacity using response surface and neural network models.

机构信息

School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

出版信息

J Hazard Mater. 2010 Jun 15;178(1-3):249-57. doi: 10.1016/j.jhazmat.2010.01.070. Epub 2010 Jan 18.

Abstract

In this work, the application of response surface and neural network models in predicting and optimizing the preparation variables of RHA/CaO/CeO(2) sorbent towards SO(2)/NO sorption capacity was investigated. The sorbents were prepared according to central composite design (CCD) with four independent variables (i.e. hydration period, RHA/CaO ratio, CeO(2) loading and the use of RHA(raw) or pretreated RHA(600 degrees C) as the starting material). Among all the variables studied, the amount of CeO(2) loading had the largest effect. The response surface models developed from CCD was effective in providing a highly accurate prediction for SO(2) and NO sorption capacities within the range of the sorbent preparation variables studied. The prediction of CCD experiment was verified by neural network models which gave almost similar results to those determined by response surface models. The response surface models together with neural network models were then successfully used to locate and validate the optimum hydration process variables for maximizing the SO(2)/NO sorption capacities. Through this optimization process, it was found that maximum SO(2) and NO sorption capacities of 44.34 and 3.51 mg/g, respectively could be obtained by using RHA/CaO/CeO(2) sorbents prepared from RHA(raw) with hydration period of 12h, RHA/CaO ratio of 2.33 and CeO(2) loading of 8.95%.

摘要

在这项工作中,研究了响应面和神经网络模型在预测和优化 RHA/CaO/CeO(2) 吸附剂制备变量方面的应用,以提高其对 SO(2)/NO 的吸附容量。采用中心复合设计 (CCD) 制备了吸附剂,考察了四个独立变量(即水合期、RHA/CaO 比、CeO(2)负载以及使用原始 RHA 或经 600°C 预处理的 RHA 作为起始原料)对 SO(2)和 NO 吸附容量的影响。在所研究的所有变量中,CeO(2)负载量的影响最大。基于 CCD 开发的响应面模型能够在研究的吸附剂制备变量范围内,为 SO(2)和 NO 吸附容量提供高度准确的预测。通过神经网络模型对 CCD 实验的预测与响应面模型的预测结果几乎相同,验证了 CCD 实验的预测。随后,成功地使用响应面模型和神经网络模型来定位和验证最佳水合过程变量,以最大化 SO(2)/NO 吸附容量。通过优化过程,发现使用原始 RHA 作为起始原料,水合期为 12h,RHA/CaO 比为 2.33,CeO(2)负载量为 8.95%,可以得到最大的 SO(2)和 NO 吸附容量,分别为 44.34 和 3.51mg/g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验