Suppr超能文献

具有非散射区域的体模光学层析成像的线性和非线性重建

Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions.

作者信息

Gibson Adam P, Hebden Jeremy C, Riley Jason, Everdell Nicholas, Schweiger Martin, Arridge Simon R, Delpy David T

机构信息

Department of Medical Physics and Bioengineering, University College London, London WC1E 6JA, United Kingdom.

出版信息

Appl Opt. 2005 Jul 1;44(19):3925-36. doi: 10.1364/ao.44.003925.

Abstract

Most research in optical imaging incorrectly assumes that light transport in nonscattering regions in the head may be modeled by use of the diffusion approximation. The effect of this assumption is examined in a series of experiments on tissue-equivalent phantoms. Images from cylindrical and head-shaped phantoms with and without clear regions [simulating the cerebrospinal fluid (CSF) filled ventricles] and a clear layer (simulating the CSF layer surrounding the brain) are reconstructed with linear and nonlinear reconstruction techniques. The results suggest that absorbing and scattering perturbations can be identified reliably with nonlinear reconstruction methods when the clear regions are also present in the reference data but that the quality of the image degrades considerably if the reference data does not contain these features. Linear reconstruction performs similarly to nonlinear reconstruction, provided the clear regions are present in the reference data, but otherwise linear reconstruction fails. This study supports the use of linear reconstruction for dynamic imaging but suggests that, in all cases, image quality is likely to improve if the clear regions are modeled correctly.

摘要

大多数光学成像研究错误地假定,头部非散射区域中的光传输可以用扩散近似来建模。在一系列针对组织等效体模的实验中,研究了这一假设的影响。使用线性和非线性重建技术,对带有和不带有透明区域(模拟充满脑脊液的脑室)以及透明层(模拟大脑周围的脑脊液层)的圆柱形和头部形状的体模进行成像重建。结果表明,当参考数据中也存在透明区域时,采用非线性重建方法能够可靠地识别吸收和散射扰动,但如果参考数据不包含这些特征,则图像质量会显著下降。如果参考数据中存在透明区域,线性重建的效果与非线性重建相似,否则线性重建会失败。本研究支持将线性重建用于动态成像,但表明在所有情况下,如果正确模拟透明区域,图像质量可能会提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验