Paluch M, Pawlus S, Hensel-Bielowka S, Kaminska E, Prevosto D, Capaccioli S, Rolla P A, Ngai K L
Institute of Physics, Silesian University, Uniwersytecka 4, 400-07 Katowice, Poland.
J Chem Phys. 2005 Jun 15;122(23):234506. doi: 10.1063/1.1931669.
Broadband dielectric measurements were carried out at isobaric and isothermal conditions up to 1.75 GPa for reconsidering the relaxation dynamics of decahydroisoquinoline, previously investigated by Richert et al. [R. Richert, K. Duvvuri, and L.-T. Duong, J. Chem. Phys. 118, 1828 (2003)] at atmospheric pressure. The relaxation time of the intense secondary relaxation tau(beta) seems to be insensitive to applied pressure, contrary to the alpha-relaxation times tau(alpha). Moreover, the separation of the alpha- and beta-relaxation times lacks correlation between shapes of the alpha-process and beta-relaxation times, predicted by the coupling model [see for example, K. L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)], suggesting that the beta process is not a true Johari-Goldstein (JG) relaxation. From the other side, by performing measurements under favorable conditions, we are able to reveal a new secondary relaxation process, otherwise suppressed by the intense beta process, and to determine the temperature dependence of its relaxation times, which is in agreement with that of the JG relaxation.
在等压和等温条件下,对十氢异喹啉进行了高达1.75 GPa的宽带介电测量,以重新考虑其弛豫动力学,此前Richert等人[R. Richert, K. Duvvuri, and L.-T. Duong, J. Chem. Phys. 118, 1828 (2003)]已在大气压下对其进行过研究。与α弛豫时间τ(α)相反,强烈二级弛豫τ(β)的弛豫时间似乎对施加的压力不敏感。此外,α弛豫时间和β弛豫时间的分离缺乏耦合模型[例如,见K. L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)]所预测的α过程形状与β弛豫时间之间的相关性,这表明β过程不是真正的乔哈里-戈尔茨坦(JG)弛豫。另一方面,通过在有利条件下进行测量,我们能够揭示一个新的二级弛豫过程,否则它会被强烈的β过程所抑制,并确定其弛豫时间的温度依赖性,这与JG弛豫的温度依赖性一致。