Suppr超能文献

使用混合广义估计方程(GEE)方法进行纵向数据分析中的有效参数估计。

Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.

作者信息

Leung Denis H Y, Wang You-Gan, Zhu Min

机构信息

School of Economics, Singapore Management University, 90 Stamford Road, Singapore.

出版信息

Biostatistics. 2009 Jul;10(3):436-45. doi: 10.1093/biostatistics/kxp002. Epub 2009 Apr 4.

Abstract

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

摘要

广义估计方程(GEEs)方法可为纵向数据的边际回归模型中的回归参数提供一致估计,即使工作相关模型设定错误(Liang和Zeger,1986)。然而,GEE估计的效率可能会受到工作相关模型选择的严重影响。本研究通过提出一种混合方法来解决这个问题,该方法基于经验似然法(Qin和Lawless,1994),结合基于不同工作相关模型的多个GEEs。分析表明,这种混合方法比使用设定错误的工作相关模型的GEE更有效。此外,如果其中一个工作相关结构正确地模拟了受试者内部的相关性,那么这种混合方法将提供最有效的参数估计。在模拟中,混合方法的有限样本性能在任何常用的工作相关模型下都优于GEE,并且在所有研究的场景中几乎都是完全有效的。使用来自275名印度尼西亚儿童呼吸道感染率纵向研究的数据说明了这种混合方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验