Suppr超能文献

一种半参数双组分“复合”混合模型及其在估计疟疾归因分数中的应用。

A semiparametric two-component "compound" mixture model and its application to estimating malaria attributable fractions.

作者信息

Qin Jing, Leung Denis H Y

机构信息

Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, 6700B Rockledge Drive MSC 7609, Bethesda, Maryland 20892, USA.

出版信息

Biometrics. 2005 Jun;61(2):456-64. doi: 10.1111/j.1541-0420.2005.00330.x.

Abstract

Malaria remains a major epidemiologic problem in many developing countries. Malaria is defined as the presence of parasites and symptoms (usually fever) due to the parasites. In endemic areas, an individual may have symptoms attributable either to malaria or to other causes. From a clinical viewpoint, it is important to correctly diagnose an individual who has developed symptoms so that the appropriate treatments can be given. From an epidemiologic and economic viewpoint, it is important to determine the proportion of malaria-affected cases in individuals who have symptoms so that policies on intervention program can be developed. Once symptoms have developed in an individual, the diagnosis of malaria can be based on the analysis of the parasite levels in blood samples. However, even a blood test is not conclusive as in endemic areas many healthy individuals can have parasites in their blood slides. Therefore, data from this type of study can be viewed as coming from a mixture distribution, with the components corresponding to malaria and non-malaria cases. A unique feature in this type of data, however, is the fact that a proportion of the non-malaria cases have zero parasite levels. Therefore, one of the component distributions is itself a mixture distribution. In this article, we propose a semiparametric likelihood approach for estimating the proportion of clinical malaria using parasite-level data from a group of individuals with symptoms. Our approach assumes the density ratio for the parasite levels in clinical malaria and nonclinical malaria cases can be modeled using a logistic model. We use empirical likelihood to combine the zero and nonzero data. The maximum semiparametric likelihood estimate is more efficient than existing nonparametric estimates using only the frequencies of zero and nonzero data. On the other hand, it is more robust than a fully parametric maximum likelihood estimate that assumes a parametric model for the nonzero data. Simulation results show that the performance of the proposed method is satisfactory. The proposed method is used to analyze data from a malaria survey carried out in Tanzania.

摘要

疟疾在许多发展中国家仍然是一个主要的流行病学问题。疟疾的定义是存在寄生虫以及由这些寄生虫引起的症状(通常是发热)。在疟疾流行地区,个人出现的症状可能归因于疟疾,也可能是其他原因。从临床角度来看,正确诊断出现症状的个体非常重要,以便能给予适当的治疗。从流行病学和经济角度来看,确定有症状个体中受疟疾影响病例的比例很重要,这样才能制定干预项目的政策。一旦个体出现症状,疟疾的诊断可以基于对血液样本中寄生虫水平的分析。然而,即使是血液检测也不是决定性的,因为在流行地区,许多健康个体的血涂片上也可能有寄生虫。因此,这类研究的数据可以被视为来自混合分布,其组成部分对应疟疾和非疟疾病例。然而,这类数据的一个独特特征是,一部分非疟疾病例的寄生虫水平为零。因此,其中一个组成分布本身就是一个混合分布。在本文中,我们提出一种半参数似然方法,用于使用一组有症状个体的寄生虫水平数据来估计临床疟疾的比例。我们的方法假设临床疟疾和非临床疟疾病例中寄生虫水平的密度比可以用逻辑模型来建模。我们使用经验似然来合并零和非零数据。最大半参数似然估计比仅使用零和非零数据频率的现有非参数估计更有效。另一方面,它比为非零数据假设参数模型的完全参数最大似然估计更稳健。模拟结果表明,所提出方法的性能令人满意。所提出的方法用于分析在坦桑尼亚进行的一次疟疾调查的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验