Shen Changyu, Weissfeld Lisa
Division of Biostatistics, School of Medicine, Indiana University, 1050 Wishard Boulevard RG R4101, Indianapolis, IN 46202, USA.
Biostatistics. 2005 Apr;6(2):333-47. doi: 10.1093/biostatistics/kxi013.
In this work, we fit pattern-mixture models to data sets with responses that are potentially missing not at random (MNAR, Little and Rubin, 1987). In estimating the regression parameters that are identifiable, we use the pseudo maximum likelihood method based on exponential families. This procedure provides consistent estimators when the mean structure is correctly specified for each pattern, with further information on the variance structure giving an efficient estimator. The proposed method can be used to handle a variety of continuous and discrete outcomes. A test built on this approach is also developed for model simplification in order to improve efficiency. Simulations are carried out to compare the proposed estimation procedure with other methods. In combination with sensitivity analysis, our approach can be used to fit parsimonious semi-parametric pattern-mixture models to outcomes that are potentially MNAR. We apply the proposed method to an epidemiologic cohort study to examine cognition decline among elderly.
在这项工作中,我们将模式混合模型应用于响应可能存在非随机缺失(MNAR,Little和Rubin,1987)的数据集。在估计可识别的回归参数时,我们使用基于指数族的伪最大似然法。当为每个模式正确指定均值结构时,此过程可提供一致的估计量,有关方差结构的更多信息可给出一个有效估计量。所提出的方法可用于处理各种连续和离散的结果。还开发了基于此方法的检验以进行模型简化,从而提高效率。进行了模拟,以将所提出的估计程序与其他方法进行比较。结合敏感性分析,我们的方法可用于将简约半参数模式混合模型应用于可能存在非随机缺失的结果。我们将所提出的方法应用于一项流行病学队列研究,以检查老年人的认知衰退情况。