Suppr超能文献

具有偏差抽样数据的不变密度比模型的似然方法。

Likelihood approaches for the invariant density ratio model with biased-sampling data.

作者信息

Shen Yu, Ning Jing, Qin Jing

机构信息

Department of Biostatistics, MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, U.S.A. ,

出版信息

Biometrika. 2012 Jun;99(2):363-378. doi: 10.1093/biomet/ass008. Epub 2012 Mar 30.

Abstract

The full likelihood approach in statistical analysis is regarded as the most efficient means for estimation and inference. For complex length-biased failure time data, computational algorithms and theoretical properties are not readily available, especially when a likelihood function involves infinite-dimensional parameters. Relying on the invariance property of length-biased failure time data under the semiparametric density ratio model, we present two likelihood approaches for the estimation and assessment of the difference between two survival distributions. The most efficient maximum likelihood estimators are obtained by the em algorithm and profile likelihood. We also provide a simple numerical method for estimation and inference based on conditional likelihood, which can be generalized to -arm settings. Unlike conventional survival data, the mean of the population failure times can be consistently estimated given right-censored length-biased data under mild regularity conditions. To check the semiparametric density ratio model assumption, we use a test statistic based on the area between two survival distributions. Simulation studies confirm that the full likelihood estimators are more efficient than the conditional likelihood estimators. We analyse an epidemiological study to illustrate the proposed methods.

摘要

统计分析中的全似然方法被视为估计和推断的最有效手段。对于复杂的长度偏倚失效时间数据,计算算法和理论性质并不容易获得,尤其是当似然函数涉及无限维参数时。基于半参数密度比模型下长度偏倚失效时间数据的不变性,我们提出了两种似然方法来估计和评估两个生存分布之间的差异。通过期望最大化(EM)算法和轮廓似然获得了最有效的最大似然估计量。我们还提供了一种基于条件似然的简单估计和推断数值方法,该方法可推广到多组设置。与传统生存数据不同,在适度的正则条件下,给定右删失的长度偏倚数据,可以一致地估计总体失效时间的均值。为检验半参数密度比模型假设,我们使用基于两个生存分布之间面积的检验统计量。模拟研究证实全似然估计量比条件似然估计量更有效。我们分析了一项流行病学研究以说明所提出的方法。

相似文献

1
Likelihood approaches for the invariant density ratio model with biased-sampling data.
Biometrika. 2012 Jun;99(2):363-378. doi: 10.1093/biomet/ass008. Epub 2012 Mar 30.
2
Maximum Likelihood Estimations and EM Algorithms with Length-biased Data.
J Am Stat Assoc. 2011 Dec 1;106(496):1434-1449. doi: 10.1198/jasa.2011.tm10156.
3
Likelihood approaches for proportional likelihood ratio model with right-censored data.
Stat Med. 2014 Jun 30;33(14):2467-79. doi: 10.1002/sim.6105. Epub 2014 Feb 6.
4
Semiparametric density ratio modeling of survival data from a prevalent cohort.
Biostatistics. 2017 Jan;18(1):62-75. doi: 10.1093/biostatistics/kxw028. Epub 2016 Jun 26.
5
Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data.
Lifetime Data Anal. 2018 Apr;24(2):250-272. doi: 10.1007/s10985-016-9385-9. Epub 2017 Feb 6.
6
Maximum likelihood estimation for semiparametric density ratio model.
Int J Biostat. 2012 Jun 27;8(1):/j/ijb.2012.8.issue-1/1557-4679.1372/1557-4679.1372.xml. doi: 10.1515/1557-4679.1372.
8
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
9
Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction.
Lifetime Data Anal. 2022 Jan;28(1):68-88. doi: 10.1007/s10985-021-09536-2. Epub 2021 Oct 8.

引用本文的文献

1
Semiparametric density ratio modeling of survival data from a prevalent cohort.
Biostatistics. 2017 Jan;18(1):62-75. doi: 10.1093/biostatistics/kxw028. Epub 2016 Jun 26.
2
Nonparametric and semiparametric regression estimation for length-biased survival data.
Lifetime Data Anal. 2017 Jan;23(1):3-24. doi: 10.1007/s10985-016-9367-y. Epub 2016 Apr 16.
3
Accelerated failure time model under general biased sampling scheme.
Biostatistics. 2016 Jul;17(3):576-88. doi: 10.1093/biostatistics/kxw008. Epub 2016 Mar 3.

本文引用的文献

2
The accelerated failure time model under biased sampling.
Biometrics. 2010 Dec;66(4):1306-8; discussion 1308. doi: 10.1111/j.1541-0420.2009.01366_1.x.
3
Inference of Tamoxifen's Effects on Prevention of Breast Cancer from a Randomized Controlled Trial.
J Am Stat Assoc. 2007 Dec 1;102(480):1235-1244. doi: 10.1198/016214506000001446.
4
Semiparametric regression in size-biased sampling.
Biometrics. 2010 Mar;66(1):149-58. doi: 10.1111/j.1541-0420.2009.01260.x. Epub 2009 May 4.
5
Design and analysis of time-to-pregnancy.
Stat Methods Med Res. 2006 Apr;15(2):127-40. doi: 10.1191/0962280206sm435oa.
6
Checking stationarity of the incidence rate using prevalent cohort survival data.
Stat Med. 2006 May 30;25(10):1751-67. doi: 10.1002/sim.2326.
8
Forward and backward recurrence times and length biased sampling: age specific models.
Lifetime Data Anal. 2004 Dec;10(4):325-34. doi: 10.1007/s10985-004-4770-1.
9
Quantifying the change of melanoma incidence by Breslow thickness.
Biometrics. 2002 Sep;58(3):665-70. doi: 10.1111/j.0006-341x.2002.00665.x.
10
A reevaluation of the duration of survival after the onset of dementia.
N Engl J Med. 2001 Apr 12;344(15):1111-6. doi: 10.1056/NEJM200104123441501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验