Ono Y, Ishiyama A, Kasai N, Yamada S, On K, Watanabe S, Yamaguchi I, Miyashita T, Tsukada K
Dept. of Electrical and Bioscience, Waseda Univ., Japan.
Neurol Clin Neurophysiol. 2004 Nov 30;2004:43.
We propose a novel classification method based on the Bayes rule to utilize the magnetocardiogram (MCG) in noninvasive mass screening. The cardiac excitation is directly tracked by maps of the MCG field generated by myocardial excitation current through the excited wave front. To adopt the characteristics of the excited wave fronts as a parameter for the Bayes theorem, we developed a parameterization procedure that consists of a two-dimensional wavelet approximation and a cluster analysis of magnetic field maps. With the parameter determined by this procedure, the probability of a subject to belong to a disease group or to the normal group is estimated by the Bayes theorem. The subject is classified into the group of the highest probability. We applied the proposed method to ST-T period of MCG data of 6 old myocardial infarction (OMI) patients and 15 normal controls. The method showed sensitivity of 83%; specificity, 100%; positive predictive value, 100%; and negative predictive value, 94% in the classification of OMI patients and normal controls. The processing time is less than 5 seconds per one subject. It suggests a possible application of the proposed method in mass screening of abnormal MCG patterns.
我们提出了一种基于贝叶斯规则的新型分类方法,以在无创大规模筛查中利用心磁图(MCG)。心肌兴奋电流通过兴奋波前产生的心磁图场图直接跟踪心脏兴奋过程。为了将兴奋波前的特征用作贝叶斯定理的参数,我们开发了一种参数化程序,该程序包括二维小波逼近和磁场图的聚类分析。利用此程序确定的参数,通过贝叶斯定理估计受试者属于疾病组或正常组的概率。将受试者分类为概率最高的组。我们将所提出的方法应用于6例陈旧性心肌梗死(OMI)患者和15例正常对照的心磁图数据的ST-T期。该方法在OMI患者和正常对照的分类中显示出83%的敏感性;特异性为100%;阳性预测值为100%;阴性预测值为94%。每个受试者的处理时间少于5秒。这表明所提出的方法在大规模筛查异常心磁图模式中可能具有应用价值。