Veliov Vladimir M
Institute of Mathematical Methods on Economics, Vienna University of Technology, Argentinierstrasse 8/119, 1040, Vienna, Austria.
J Math Biol. 2005 Aug;51(2):123-43. doi: 10.1007/s00285-004-0288-0. Epub 2005 Jul 13.
The paper investigates a class of SIS models of the evolution of an infectious disease in a heterogeneous population. The heterogeneity reflects individual differences in the susceptibility or in the contact rates and leads to a distributed parameter system, requiring therefore, distributed initial data, which are often not available. It is shown that there exists a corresponding homogeneous (ODE) population model that gives the same aggregated results as the distributed one, at least in the expansion phase of the disease. However, this ODE model involves a nonlinear "prevalence-to-incidence" function which is not constructively defined. Based on several established properties of this function, a simple class of approximating function is proposed, depending on three free parameters that could be estimated from scarce data. How the behaviour of a population depends on the level of heterogeneity (all other parameters kept equal) - this is the second issue studied in the paper. It turns out that both for the short run and for the long run behaviour there exist threshold values, such that more heterogeneity is advantageous for the population if and only if the initial (weighted) prevalence is above the threshold.
本文研究了一类用于描述异质人群中传染病传播的SIS模型。这种异质性反映了个体在易感性或接触率方面的差异,进而导致了一个分布参数系统,因此需要分布初始数据,但这些数据往往难以获取。研究表明,至少在疾病的传播阶段,存在一个相应的同质(常微分方程)人群模型,其给出的总体结果与分布参数模型相同。然而,这个常微分方程模型涉及一个非线性的“患病率-发病率”函数,该函数没有建设性的定义。基于该函数的几个既定性质,提出了一类简单的近似函数,它依赖于三个可从稀缺数据中估计的自由参数。人群行为如何依赖于异质性水平(其他所有参数保持不变)——这是本文研究的第二个问题。结果表明,无论是短期行为还是长期行为,都存在阈值,使得当且仅当初始(加权)患病率高于阈值时,更多的异质性对人群有利。