Suppr超能文献

用于全身皮肤电子照射中散射箔设计和剂量测定的蒙特卡罗技术。

Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations.

作者信息

Ye Sung-Joon, Pareek Prem N, Spencer Sharon, Duan Jun, Brezovich Ivan A

机构信息

Department of Radiation Oncology, The University of Alabama School of Medicine, 1824 6th Avenue South, Birmingham, Alabama 35294, USA.

出版信息

Med Phys. 2005 Jun;32(6):1460-8. doi: 10.1118/1.1924368.

Abstract

Total skin electron irradiation (TSEI) with single fields requires large electron beams having good dose uniformity, dmax at the skin surface, and low bremsstrahlung contamination. To satisfy these requirements, energy degraders and scattering foils have to be specially designed for the given accelerator and treatment room. We used Monte Carlo (MC) techniques based on EGS4 user codes (BEAM, DOSXYZ, and DOSRZ) as a guide in the beam modifier design of our TSEI system. The dosimetric characteristics at the treatment distance of 382 cm source-to-surface distance (SSD) were verified experimentally using a linear array of 47 ion chambers, a parallel plate chamber, and radiochromic film. By matching MC simulations to standard beam measurements at 100 cm SSD, the parameters of the electron beam incident on the vacuum window were determined. Best match was achieved assuming that electrons were monoenergetic at 6.72 MeV, parallel, and distributed in a circular pattern having a Gaussian radial distribution with full width at half maximum = 0.13 cm. These parameters were then used to simulate our TSEI unit with various scattering foils. Two of the foils were fabricated and experimentally evaluated by measuring off-axis dose uniformity and depth doses. A scattering foil, consisting of a 12 x 12 cm2 aluminum plate of 0.6 cm thickness and placed at isocenter perpendicular to the beam direction, was considered optimal. It produced a beam that was flat within +/-3% up to 60 cm off-axis distance, dropped by not more than 8% at a distance of 90 cm, and had an x-ray contamination of <3%. For stationary beams, MC-computed dmax, Rp, and R50 agreed with measurements within 0.5 mm. The MC-predicted surface dose of the rotating phantom was 41% of the dose rate at dmax of the stationary phantom, whereas our calculations based on a semiempirical formula in the literature yielded a drop to 42%. The MC simulations provided the guideline of beam modifier design for TSEI and estimated the dosimetric performance for stationary and rotational irradiations.

摘要

单野全身皮肤电子线照射(TSEI)需要大的电子束,其具有良好的剂量均匀性、皮肤表面的剂量最大值(dmax)以及低的轫致辐射污染。为满足这些要求,必须针对给定的加速器和治疗室专门设计能量衰减器和散射箔。我们使用基于EGS4用户代码(BEAM、DOSXYZ和DOSRZ)的蒙特卡罗(MC)技术作为我们TSEI系统束流修正器设计的指导。在源皮距(SSD)为382 cm的治疗距离处,使用47个电离室的线性阵列、平行板电离室和放射变色胶片对剂量学特性进行了实验验证。通过将MC模拟与100 cm SSD处的标准束流测量结果相匹配,确定了入射到真空窗上的电子束参数。假设电子能量为单能6.72 MeV、平行且呈高斯径向分布,半高宽 = 0.13 cm,呈圆形分布时,实现了最佳匹配。然后使用这些参数对配备各种散射箔的我们的TSEI装置进行模拟。制作了其中两种箔,并通过测量离轴剂量均匀性和深度剂量进行了实验评估。一种由厚度为0.6 cm的12×12 cm2铝板组成、置于等中心且垂直于束流方向的散射箔被认为是最佳的。它产生的束流在离轴距离达60 cm范围内的平坦度在±3%以内,在90 cm距离处下降不超过8%,且X射线污染<3%。对于固定束流,MC计算的dmax、Rp和R50与测量值在0.5 mm范围内一致。MC预测的旋转体模表面剂量为固定体模dmax处剂量率的41%,而我们基于文献中的半经验公式的计算得出下降至42%。MC模拟为TSEI的束流修正器设计提供了指导,并估计了固定和旋转照射的剂量学性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验