Vidal Enrique, Thollard Franck, de la Higuera Colin, Casacuberta Francisco, Carrasco Rafael C
Departamento de Sistemas Informáticos y Computación and Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Camino de Vera s/n, E-46071 Valencia, Spain.
IEEE Trans Pattern Anal Mach Intell. 2005 Jul;27(7):1013-25. doi: 10.1109/TPAMI.2005.147.
Probabilistic finite-state machines are used today in a variety of areas in pattern recognition, or in fields to which pattern recognition is linked: computational linguistics, machine learning, time series analysis, circuit testing, computational biology, speech recognition, and machine translation are some of them. In Part I of this paper, we survey these generative objects and study their definitions and properties. In Part II, we will study the relation of probabilistic finite-state automata with other well-known devices that generate strings as hidden Markov models and n-grams and provide theorems, algorithms, and properties that represent a current state of the art of these objects.
概率有限状态机如今在模式识别的各个领域,或与模式识别相关的领域中得到应用:计算语言学、机器学习、时间序列分析、电路测试、计算生物学、语音识别和机器翻译等只是其中一部分。在本文的第一部分,我们综述这些生成对象并研究它们的定义和性质。在第二部分,我们将研究概率有限状态自动机与其他一些知名的生成字符串的装置(如隐马尔可夫模型和n元语法)之间的关系,并给出代表这些对象当前技术水平的定理、算法和性质。