Suppr超能文献

可溶性酿酒酵母加工型α-葡萄糖苷酶I的结合残基和催化结构域

Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I.

作者信息

Faridmoayer Amirreza, Scaman Christine H

机构信息

Food, Nutrition, and Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.

出版信息

Glycobiology. 2005 Dec;15(12):1341-8. doi: 10.1093/glycob/cwj009. Epub 2005 Jul 13.

Abstract

Alpha-glucosidase I initiates the trimming of newly assembled N-linked glycoproteins in the lumen of the endoplasmic reticulum (ER). Site-specific chemical modification of the soluble alpha-glucosidase I from yeast using diethylpyrocarbonate (DEPC) and tetranitromethane (TNM) revealed that histidine and tyrosine are involved in the catalytic activity of the enzyme, as these residues could be protected from modification using the inhibitor deoxynojirimycin. Deoxynojirimycin could not prevent inactivation of enzyme treated with N-bromosuccinimide (NBS) used to modify tryptophan residues. Therefore, the binding mechanism of yeast enzyme contains different amino acid residues compared to its mammalian counterpart. Catalytically active polypeptides were isolated from endogenous proteolysis and controlled trypsin hydrolysis of the enzyme. A 37-kDa nonglycosylated polypeptide was isolated as the smallest active fragment from both digests, using affinity chromatography with inhibitor-based resins (N-methyl-N-59-carboxypentyl- and N-59-carboxypentyl-deoxynojirimycin). N-terminal sequencing confirmed that the catalytic domain of the enzyme is located at the C-terminus. The hydrolysis sites were between Arg(521) and Thr(522) for endogenous proteolysis and residues Lys(524) and Phe(525) for the trypsin-generated peptide. This 37-kDa polypeptide is 1.9 times more active than the 98-kDa protein when assayed with the synthetic trisaccharide, alpha-D-Glc1,2alpha-D-Glc1,3alpha-D-Glc-O(CH2)(8)COOCH(3), and is not glycosylated. Identification of this relatively small fragment with catalytic activity will allow mechanistic studies to focus on this critical region and raises interesting questions about the relationship between the catalytic region and the remaining polypeptide.

摘要

α-葡糖苷酶I在内质网(ER)腔中启动新组装的N-连接糖蛋白的修剪。使用焦碳酸二乙酯(DEPC)和四硝基甲烷(TNM)对来自酵母的可溶性α-葡糖苷酶I进行位点特异性化学修饰,结果表明组氨酸和酪氨酸参与了该酶的催化活性,因为这些残基可以使用抑制剂脱氧野尻霉素来防止修饰。脱氧野尻霉素不能阻止用N-溴代琥珀酰亚胺(NBS)处理的酶的失活,N-溴代琥珀酰亚胺用于修饰色氨酸残基。因此,与哺乳动物对应物相比,酵母酶的结合机制包含不同的氨基酸残基。从该酶的内源性蛋白水解和可控胰蛋白酶水解中分离出具有催化活性的多肽。使用基于抑制剂的树脂(N-甲基-N-5'-羧基戊基-和N-5'-羧基戊基-脱氧野尻霉素)的亲和色谱法,从两种消化物中分离出一种37 kDa的非糖基化多肽作为最小的活性片段。N端测序证实该酶的催化结构域位于C端。内源性蛋白水解的水解位点在Arg(521)和Thr(522)之间,胰蛋白酶生成的肽的水解位点在Lys(524)和Phe(525)残基之间。当用合成三糖α-D-Glc1,2α-D-Glc1,3α-D-Glc-O(CH2)(8)COOCH(3)进行测定时,这种37 kDa的多肽比98 kDa的蛋白质活性高1.9倍,并且未被糖基化。鉴定出这种具有催化活性的相对较小的片段将使机制研究能够聚焦于这个关键区域,并引发了关于催化区域与其余多肽之间关系的有趣问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验