Suppr超能文献

α-葡萄糖苷酶 I 的特异性受底物构象的指导:晶体学和计算机研究。

Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies.

机构信息

Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada.

出版信息

J Biol Chem. 2013 May 10;288(19):13563-74. doi: 10.1074/jbc.M113.460436. Epub 2013 Mar 27.

Abstract

BACKGROUND

The enzyme “GluI” is key to the synthesis of critical glycoproteins in the cell.

RESULTS

We have determined the structure of GluI, and modeled binding with its unique sugar substrate.

CONCLUSION

The specificity of this interaction derives from a unique conformation of the substrate.

SIGNIFICANCE

Understanding the mechanism of the enzyme is of basic importance and relevant to potential development of antiviral inhibitors. Processing α-glucosidase I (GluI) is a key member of the eukaryotic N-glycosylation processing pathway, selectively catalyzing the first glycoprotein trimming step in the endoplasmic reticulum. Inhibition of GluI activity impacts the infectivity of enveloped viruses; however, despite interest in this protein from a structural, enzymatic, and therapeutic standpoint, little is known about its structure and enzymatic mechanism in catalysis of the unique glycan substrate Glc3Man9GlcNAc2. The first structural model of eukaryotic GluI is here presented at 2-Å resolution. Two catalytic residues are proposed, mutations of which result in catalytically inactive, properly folded protein. Using Autodocking methods with the known substrate and inhibitors as ligands, including a novel inhibitor characterized in this work, the active site of GluI was mapped. From these results, a model of substrate binding has been formulated, which is most likely conserved in mammalian GluI.

摘要

背景

酶“GluI”是细胞中关键糖蛋白合成的关键。

结果

我们已经确定了 GluI 的结构,并对其与独特糖底物的结合进行了建模。

结论

这种相互作用的特异性源于底物的独特构象。

意义

了解酶的机制具有基本重要性,并且与潜在的抗病毒抑制剂的开发相关。

处理α-葡萄糖苷酶 I(GluI)是真核 N-糖基化加工途径的关键成员,选择性地催化内质网中第一个糖蛋白修剪步骤。GluI 活性的抑制会影响包膜病毒的感染力;然而,尽管从结构、酶学和治疗角度对该蛋白很感兴趣,但对于其在催化独特聚糖底物 Glc3Man9GlcNAc2 中的结构和酶促机制知之甚少。这里以 2-Å 的分辨率呈现了真核 GluI 的第一个结构模型。提出了两个催化残基,突变这两个残基会导致催化失活但正确折叠的蛋白质。使用自动对接方法,以已知的底物和抑制剂作为配体,包括本工作中表征的一种新型抑制剂,对 GluI 的活性位点进行了映射。根据这些结果,制定了一个可能在哺乳动物 GluI 中保守的底物结合模型。

相似文献

1
Specificity of Processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies.
J Biol Chem. 2013 May 10;288(19):13563-74. doi: 10.1074/jbc.M113.460436. Epub 2013 Mar 27.
2
Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I.
Glycobiology. 2005 Dec;15(12):1341-8. doi: 10.1093/glycob/cwj009. Epub 2005 Jul 13.
3
5
Structure-Based Design of Potent Iminosugar Inhibitors of Endoplasmic Reticulum α-Glucosidase I with Anti-SARS-CoV-2 Activity.
J Med Chem. 2023 Feb 23;66(4):2744-2760. doi: 10.1021/acs.jmedchem.2c01750. Epub 2023 Feb 10.
6
Effects of L-malic acid on alpha-glucosidase: inhibition kinetics and computational molecular dynamics simulations.
Appl Biochem Biotechnol. 2015 Feb;175(4):2232-45. doi: 10.1007/s12010-014-1429-6. Epub 2014 Dec 5.
7
Xanthenone-based hydrazones as potent α-glucosidase inhibitors: Synthesis, solid state self-assembly and in silico studies.
Bioorg Chem. 2019 Mar;84:372-383. doi: 10.1016/j.bioorg.2018.11.053. Epub 2018 Nov 30.
9
Inhibitory mechanism of sinensetin on α-glucosidase and non-enzymatic glycation: Insights from spectroscopy and molecular docking analyses.
Int J Biol Macromol. 2021 Jan 1;166:259-267. doi: 10.1016/j.ijbiomac.2020.10.174. Epub 2020 Oct 26.

引用本文的文献

1
Chiral pyrimidinyl-piperazine carboxamide derivatives as potent yeast α-glucosidase inhibitors.
Sci Rep. 2025 Jul 2;15(1):23241. doi: 10.1038/s41598-025-06104-8.
4
Alpha-glucosidase inhibitory compounds from Vietnamese lichen : and aspects.
RSC Adv. 2024 Oct 15;14(44):32624-32636. doi: 10.1039/d4ra04449e. eCollection 2024 Oct 9.
5
Harnessing Phytochemicals to Regulate Catalytic Residues of Alpha-Amylase and Alpha-Glucosidase in Type 2 Diabetes.
Cell Biochem Biophys. 2025 Jun;83(2):1657-1675. doi: 10.1007/s12013-024-01575-4. Epub 2024 Oct 9.
6
Expanding horizons of iminosugars as broad-spectrum anti-virals: mechanism, efficacy and novel developments.
Nat Prod Bioprospect. 2024 Sep 26;14(1):55. doi: 10.1007/s13659-024-00477-5.
7
Genetic and enzymatic characterization of Amy13E from reclassifies it as a cyclodextrinase also capable of α-diglucoside degradation.
Appl Environ Microbiol. 2024 Jan 24;90(1):e0152123. doi: 10.1128/aem.01521-23. Epub 2023 Dec 12.
9
Synthesis and Molecular Docking Studies of Novel Biheterocyclic Propanamides as Antidiabetic Agents Having Mild Cytotoxicity.
ACS Omega. 2023 Jun 14;8(25):22899-22911. doi: 10.1021/acsomega.3c01882. eCollection 2023 Jun 27.
10
Structure-Based Design of Potent Iminosugar Inhibitors of Endoplasmic Reticulum α-Glucosidase I with Anti-SARS-CoV-2 Activity.
J Med Chem. 2023 Feb 23;66(4):2744-2760. doi: 10.1021/acs.jmedchem.2c01750. Epub 2023 Feb 10.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Function and structure studies of GH family 31 and 97 α-glycosidases.
Biosci Biotechnol Biochem. 2011;75(12):2269-77. doi: 10.1271/bbb.110610. Epub 2011 Dec 7.
4
Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes.
Int J Microbiol. 2010;2010:148178. doi: 10.1155/2010/148178. Epub 2011 Jan 27.
5
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
6
Protein N-glycosylation, protein folding, and protein quality control.
Mol Cells. 2010 Dec;30(6):497-506. doi: 10.1007/s10059-010-0159-z. Epub 2010 Nov 26.
7
Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database.
J Comput Chem. 2011 Mar;32(4):742-55. doi: 10.1002/jcc.21643. Epub 2010 Sep 1.
8
Dali server: conservation mapping in 3D.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9. doi: 10.1093/nar/gkq366. Epub 2010 May 10.
9
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
10
Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans.
Glycobiology. 2010 Aug;20(8):959-69. doi: 10.1093/glycob/cwq051. Epub 2010 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验