Suppr超能文献

设计研究与观察性研究中P值的使用与误用:给研究者和评审者的指南

Use and misuse of p-values in designed and observational studies: guide for researchers and reviewers.

作者信息

Ludwig David A

机构信息

Dept. of Pediatrics, Medical College of Georgia, Georgia Prevention Institute, Augusta, GA 30912-3710, USA.

出版信息

Aviat Space Environ Med. 2005 Jul;76(7):675-80.

Abstract

Analysis of scientific data involves many components, one of which is often statistical testing with the calculation of p-values. However, researchers too often pepper their papers with p-values in the absence of critical thinking about their results. In fact, statistical tests in their various forms address just one question: does an observed difference exceed that which might reasonably be expected solely as a result of sampling error and/or random allocation of experimental material? Such tests are best applied to the results of designed studies with reasonable control of experimental error and sampling error, as well as acquisition of a sufficient sample size. Nevertheless, attributing an observed difference to a specific treatment effect requires critical thinking on the part of the scientist. Observational studies involve data sets whose size is usually a matter of convenience with results that reflect a number of potentially confounding factors. In this situation, statistical testing is not appropriate and p-values may be misleading; other more modern statistical tools should be used instead, including graphic analysis, computer-intensive methods, regression trees, and other procedures broadly classified as bioinformatics, data mining, and exploratory data analysis. In this review, the utility of p-values calculated from designed experiments and observational studies are discussed, leading to the formation of a decision tree to aid researchers and reviewers in understanding both the benefits and limitations of statistical testing.

摘要

科学数据分析涉及许多方面,其中之一通常是通过计算p值进行统计检验。然而,研究人员常常在对结果缺乏批判性思考的情况下,在论文中大量使用p值。事实上,各种形式的统计检验都只解决一个问题:观察到的差异是否超过了仅由抽样误差和/或实验材料的随机分配所合理预期的差异?此类检验最适用于对实验误差和抽样误差有合理控制且样本量足够的设计研究结果。然而,要将观察到的差异归因于特定的治疗效果,科学家需要进行批判性思考。观察性研究涉及的数据集大小通常取决于便利性,其结果反映了许多潜在的混杂因素。在这种情况下,统计检验并不合适,p值可能会产生误导;应使用其他更现代的统计工具,包括图形分析、计算机密集型方法、回归树以及其他大致归类为生物信息学、数据挖掘和探索性数据分析的程序。在这篇综述中,我们讨论了从设计实验和观察性研究中计算出的p值的效用,从而形成了一个决策树,以帮助研究人员和审稿人理解统计检验的益处和局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验