González-Sánchez A, Alcántara S, Razo-Flores E, Revah S
Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana Iztapalapa, México DF, México.
Lett Appl Microbiol. 2005;41(2):141-6. doi: 10.1111/j.1472-765X.2005.01741.x.
To evaluate the contribution of oxygen transfer and consumption in a sulfoxidizing system to increase the elemental sulfur yield from thiosulfate oxidation.
A 10 l thiosulfate oxidizing bioreactor with suspended cells operating under microaerophilic conditions and a separated aerator with a variable volume of 0.8--1.7 l were operated with a consortium containing mainly Thiobacillus sp. that oxidizes several sulfide species to elemental sulfur and sulfate. From the gas-liquid oxygen balance, the k(L)a was estimated under different operation conditions. A k(L)a of around 200 h(-1) favoured elemental sulfur production and can serve as scale-up criterion. It was further shown that more than 50% of the oxygen fed to the system was consumed in the aerator.
The performance of the sulfoxidizing system can be improved by controlling oxygen transfer.
The proposed method for the k(L)a determination was based on the oxygen balance, which incorporates the oxygen concentrations measured in the liquid in steady state, reducing the interference of the response time in the traditional non-steady state methods. This approach can be used to optimize reactors where microaerophilic conditions are desirable.
评估硫氧化系统中氧传递和消耗对提高硫代硫酸盐氧化产生元素硫产量的贡献。
一个10升的硫代硫酸盐氧化生物反应器,带有在微需氧条件下运行的悬浮细胞,以及一个可变体积为0.8 - 1.7升的独立曝气器,用主要包含氧化多种硫化物为元素硫和硫酸盐的硫杆菌属的混合菌群进行操作。根据气液氧平衡,在不同操作条件下估算了k(L)a。约200 h(-1)的k(L)a有利于元素硫的产生,可作为放大标准。进一步表明,供给系统的氧气超过50%在曝气器中被消耗。
通过控制氧传递可提高硫氧化系统的性能。
所提出的k(L)a测定方法基于氧平衡,该平衡纳入了稳态下液体中测得的氧浓度,减少了传统非稳态方法中响应时间的干扰。这种方法可用于优化需要微需氧条件的反应器。