van den Bosch Pim L F, van Beusekom Otto C, Buisman Cees J N, Janssen Albert J H
Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, 6700 EV Wageningen, The Netherlands.
Biotechnol Bioeng. 2007 Aug 1;97(5):1053-63. doi: 10.1002/bit.21326.
A biotechnological process is described to remove hydrogen sulfide (H(2)S) from high-pressure natural gas and sour gases produced in the petrochemical industry. The process operates at halo-alkaline conditions and combines an aerobic sulfide-oxidizing reactor with an anaerobic sulfate (SO(4) (2-)) and thiosulfate (S(2)O(3) (2-)) reducing reactor. The feasibility of biological H(2)S oxidation at pH around 10 and total sodium concentration of 2 mol L(-1) was studied in gas-lift bioreactors, using halo-alkaliphilic sulfur-oxidizing bacteria (HA-SOB). Reactor operation at different oxygen to sulfide (O(2):H(2)S) supply ratios resulted in a stable low redox potential that was directly related with the polysulfide (S(x) (2-)) and total sulfide concentration in the bioreactor. Selectivity for SO(4) (2-) formation decreased with increasing S(x) (2-) and total sulfide concentrations. At total sulfide concentrations above 0.25 mmol L(-1), selectivity for SO(4) (2-) formation approached zero and the end products of H(2)S oxidation were elemental sulfur (S(0)) and S(2)O(3) (2-). Maximum selectivity for S(0) formation (83.3+/-0.7%) during stable reactor operation was obtained at a molar O(2):H(2)S supply ratio of 0.65. Under these conditions, intermediary S(x) (2-) plays a major role in the process. Instead of dissolved sulfide (HS(-)), S(x) (2-) seemed to be the most important electron donor for HA-SOB under S(0) producing conditions. In addition, abiotic oxidation of S(x) (2-) was the main cause of undesirable formation of S(2)O(3) (2-). The observed biomass growth yield under SO(4) (2-) producing conditions was 0.86 g N mol(-1) H(2)S. When selectivity for SO(4) (2-) formation was below 5%, almost no biomass growth was observed.
本文描述了一种生物技术工艺,用于从高压天然气和石油化工行业产生的酸性气体中去除硫化氢(H₂S)。该工艺在卤代碱性条件下运行,将好氧硫化物氧化反应器与厌氧硫酸盐(SO₄²⁻)和硫代硫酸盐(S₂O₃²⁻)还原反应器相结合。使用嗜卤碱性硫氧化细菌(HA-SOB),在气升式生物反应器中研究了在pH约为10且总钠浓度为2 mol L⁻¹的条件下生物氧化H₂S的可行性。在不同的氧气与硫化物(O₂:H₂S)供应比下运行反应器,产生了稳定的低氧化还原电位,该电位与生物反应器中的多硫化物(Sₓ²⁻)和总硫化物浓度直接相关。随着Sₓ²⁻和总硫化物浓度的增加,SO₄²⁻形成的选择性降低。当总硫化物浓度高于0.25 mmol L⁻¹时,SO₄²⁻形成的选择性接近零,H₂S氧化的最终产物是元素硫(S₀)和S₂O₃²⁻。在稳定的反应器运行期间,当摩尔O₂:H₂S供应比为0.65时,获得了S₀形成的最大选择性(83.3±0.7%)。在这些条件下,中间产物Sₓ²⁻在该过程中起主要作用。在产生S₀的条件下,Sₓ²⁻似乎是HA-SOB最重要的电子供体,而不是溶解的硫化物(HS⁻)。此外,Sₓ²⁻的非生物氧化是S₂O₃²⁻不良形成的主要原因。在产生SO₄²⁻的条件下观察到的生物量生长产率为0.86 g N mol⁻¹ H₂S。当SO₄²⁻形成的选择性低于5%时,几乎没有观察到生物量生长。