Suppr超能文献

绿色荧光蛋白光反应中的超快和低势垒运动

Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein.

作者信息

van Thor Jasper J, Georgiev Georgi Y, Towrie Michael, Sage J Timothy

机构信息

Laboratory of Molecular Biophysics, University of Oxford, Rex Richards Building, South Parks Road, Oxford OX1 3QU, United Kingdom.

出版信息

J Biol Chem. 2005 Sep 30;280(39):33652-9. doi: 10.1074/jbc.M505473200. Epub 2005 Jul 20.

Abstract

Green fluorescent protein (GFP) fluoresces efficiently under blue excitation despite major electrostatic rearrangements resulting from photoionization of the chromophore and neutralization of Glu-222. A competing phototransformation process, which ionizes the chromophore and decarboxylates Glu-222, mimics the electrostatic and structural changes in the fluorescence photocycle. Structural and spectroscopic analysis of the cryogenically stabilized photoproduct at 100 K and a structurally annealed intermediate of the phototransformed protein at 170 K reveals distinct structural relaxations involving protein, chromophore, solvent, and photogenerated CO2. Strong structural changes of the 100 K photoproduct after decarboxylation appear exclusively within 15 angstroms of the chromophore and include the electrostatically driven perturbations of Gln-69, Cys-70, and water molecules in an H-bonding network connecting the chromophore. X-ray crystallography to 1.85 angstroms resolution and static and picosecond time-resolved IR spectroscopy identify structural mechanisms common to phototransformation and to the fluorescence photocycle. In particular, the appearance of a 1697 cm(-1) (+) difference band in both photocycle and phototransformation intermediates is a spectroscopic signature for the structural perturbation of Gln-69. This is taken as evidence for an electrostatically driven dynamic response that is common to both photoreaction pathways. The interactions between the chromophore and the perturbed residues and solvent are decreased or removed in the T203H single and T203H/Q69L double mutants, resulting in a strong reduction of the fluorescence quantum yield. This suggests that the electrostatic response to the transient formation of a buried charge in the wild type is important for the bright fluorescence.

摘要

绿色荧光蛋白(GFP)在蓝色激发下能高效发出荧光,尽管发色团光致电离和Glu-222去质子化会导致主要的静电重排。一种竞争性的光转化过程,使发色团电离并使Glu-222脱羧,模拟了荧光光循环中的静电和结构变化。对100 K下低温稳定的光产物以及170 K下光转化蛋白的结构退火中间体进行的结构和光谱分析揭示了涉及蛋白质、发色团、溶剂和光生二氧化碳的明显结构弛豫。脱羧后100 K光产物的强烈结构变化仅出现在发色团周围15埃范围内,包括连接发色团的氢键网络中Gln-69、Cys-70和水分子的静电驱动扰动。分辨率达1.85埃的X射线晶体学以及静态和皮秒时间分辨红外光谱确定了光转化和荧光光循环共有的结构机制。特别是,在光循环和光转化中间体中均出现的1697 cm(-1)(+)差谱带是Gln-69结构扰动的光谱特征。这被视为两种光反应途径共有的静电驱动动态响应的证据。在T203H单突变体和T203H/Q69L双突变体中,发色团与受扰动残基和溶剂之间的相互作用减少或消除,导致荧光量子产率大幅降低。这表明野生型中对埋藏电荷瞬时形成的静电响应对于明亮荧光很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验