Maejima Takashi, Oka Saori, Hashimotodani Yuki, Ohno-Shosaku Takako, Aiba Atsu, Wu Dianqing, Waku Keizo, Sugiura Takayuki, Kano Masanobu
Department of Cellular Neurophysiology, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan.
J Neurosci. 2005 Jul 20;25(29):6826-35. doi: 10.1523/JNEUROSCI.0945-05.2005.
Endocannabinoids mediate retrograde signaling and modulate synaptic transmission in various regions of the CNS. Depolarization-induced elevation of intracellular Ca2+ concentration causes endocannabinoid-mediated suppression of excitatory/inhibitory synaptic transmission. Activation of G(q/11)-coupled receptors including group I metabotropic glutamate receptors (mGluRs) also causes endocannabinoid-mediated suppression of synaptic transmission. However, precise mechanisms of endocannabinoid production initiated by physiologically relevant synaptic activity remain to be determined. To address this problem, we made whole-cell recordings from Purkinje cells (PCs) in mouse cerebellar slices and examined their excitatory synapses arising from climbing fibers (CFs) and parallel fibers (PFs). We first characterized three distinct modes to induce endocannabinoid release by analyzing CF to PC synapses. The first mode is strong activation of mGluR subtype 1 (mGluR1)-phospholipase C (PLC) beta4 cascade without detectable Ca2+ elevation. The second mode is Ca2+ elevation to a micromolar range without activation of the mGluR1-PLCbeta4 cascade. The third mode is the Ca2+-assisted mGluR1-PLCbeta4 cascade that requires weak mGluR1 activation and Ca2+ elevation to a submicromolar range. By analyzing PF to PC synapses, we show that the third mode is essential for effective endocannabinoid release from PCs by excitatory synaptic activity. Furthermore, our biochemical analysis demonstrates that combined weak mGluR1 activation and mild depolarization in PCs effectively produces 2-arachidonoylglycerol (2-AG), a candidate of endocannabinoid, whereas either stimulus alone did not produce detectable 2-AG. Our results strongly suggest that under physiological conditions, excitatory synaptic inputs to PCs activate the Ca2+-assisted mGluR1-PLCbeta4 cascade, and thereby produce 2-AG, which retrogradely modulates synaptic transmission to PCs.
内源性大麻素介导逆行信号传递并调节中枢神经系统各区域的突触传递。去极化诱导的细胞内Ca2+浓度升高会导致内源性大麻素介导的兴奋性/抑制性突触传递抑制。包括I组代谢型谷氨酸受体(mGluRs)在内的G(q/11)偶联受体的激活也会导致内源性大麻素介导的突触传递抑制。然而,由生理相关突触活动引发的内源性大麻素产生的确切机制仍有待确定。为了解决这个问题,我们对小鼠小脑切片中的浦肯野细胞(PCs)进行了全细胞记录,并检查了来自攀缘纤维(CFs)和平行纤维(PFs)的兴奋性突触。我们首先通过分析CF与PC突触来表征三种不同的诱导内源性大麻素释放的模式。第一种模式是mGluR亚型1(mGluR1)-磷脂酶C(PLC)β4级联的强烈激活,而未检测到Ca2+升高。第二种模式是Ca2+升高到微摩尔范围,而未激活mGluR1-PLCβ4级联。第三种模式是Ca2+辅助的mGluR1-PLCβ4级联,它需要弱的mGluR1激活和Ca2+升高到亚微摩尔范围。通过分析PF与PC突触,我们表明第三种模式对于兴奋性突触活动从PCs有效释放内源性大麻素至关重要。此外,我们的生化分析表明,PCs中mGluR1的弱激活和轻度去极化相结合可有效产生内源性大麻素的候选物2-花生四烯酸甘油酯(2-AG),而单独的任何一种刺激都不会产生可检测到的2-AG。我们的结果强烈表明,在生理条件下,PCs的兴奋性突触输入激活Ca2+辅助的mGluR1-PLCβ4级联,从而产生2-AG,其逆行调节向PCs的突触传递。