Suppr超能文献

突触素缺失会损害CA3-CA1突触处的代谢型谷氨酸受体5(mGluR5)以及蛋白质合成依赖性的代谢型谷氨酸受体长时程抑制(mGluR-LTD)。

Loss of synaptopodin impairs mGluR5 and protein synthesis-dependent mGluR-LTD at CA3-CA1 synapses.

作者信息

Wu Pei You, Ji Linjia, De Sanctis Claudia, Francesconi Anna, Inglebert Yanis, McKinney R Anne

机构信息

Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.

出版信息

PNAS Nexus. 2024 Feb 8;3(2):pgae062. doi: 10.1093/pnasnexus/pgae062. eCollection 2024 Feb.

Abstract

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.

摘要

代谢型谷氨酸受体依赖性长时程抑制(mGluR-LTD)是一种重要的突触可塑性形式,发生于中枢神经系统的许多区域,是多种学习模式的潜在机制。在海马体中,mGluR-LTD表现为突触传递减弱和树突棘消除。有趣的是,并非所有的树突棘对mGluR-LTD的反应或经历可塑性变化都是相同的。含有突触足蛋白(SP)的一部分树突棘,一种肌动蛋白相关蛋白,对mGluR-LTD至关重要,并通过mGluR1活性保护树突棘不被消除。SP的确切细胞功能仍然未知,尽管它调节结构可塑性,但仍不清楚SP如何对mGluR-LTD的功能方面做出贡献。在本研究中,我们表明SP的缺失通过负面影响mGluR5依赖性活性而损害mGluR-LTD。mGluR5活性的这种损害伴随着SP基因敲除(SPKO)小鼠表面mGluR5水平的显著降低。有趣的是,在SPKO小鼠中,剩余的mGluR-LTD成为一个不依赖蛋白质合成的过程,而是由内源性大麻素信号传导介导。这些数据表明,突触后蛋白SP可以调节mGluR-LTD的表达位点,并为我们理解脊柱/突触特异性可塑性提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8f7/10879843/17b330dff0b1/pgae062f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验