Suppr超能文献

相似文献

2
3
A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
J Neurosci. 2018 Nov 28;38(48):10314-10328. doi: 10.1523/JNEUROSCI.1082-18.2018. Epub 2018 Oct 12.
4
Bilateral coordination in human infants: stepping on a split-belt treadmill.
J Exp Psychol Hum Percept Perform. 1987 Aug;13(3):405-10. doi: 10.1037//0096-1523.13.3.405.
5
Infant stepping: a window to the behaviour of the human pattern generator for walking.
Can J Physiol Pharmacol. 2004 Aug-Sep;82(8-9):662-74. doi: 10.1139/y04-070.
7
Simultaneous control of forward and backward locomotion by spinal sensorimotor circuits.
J Physiol. 2024 Jan;602(1):183-204. doi: 10.1113/JP285473. Epub 2023 Nov 28.
8
Limping on split-belt treadmills implies opposite kinematic and dynamic lower limb asymmetries.
Int J Rehabil Res. 2018 Dec;41(4):304-315. doi: 10.1097/MRR.0000000000000320.
9
Human neuronal interlimb coordination during split-belt locomotion.
Exp Brain Res. 1994;101(3):513-20. doi: 10.1007/BF00227344.
10
Leg muscle activation during gait in Parkinson's disease: adaptation and interlimb coordination.
Electroencephalogr Clin Neurophysiol. 1995 Dec;97(6):408-15. doi: 10.1016/0924-980x(95)00109-x.

引用本文的文献

1
Exploring the cortical involvement in sensorimotor integration during early stages of independent walking.
Exp Brain Res. 2025 May 26;243(6):153. doi: 10.1007/s00221-025-07099-4.
2
Evidence of sensory error threshold in triggering locomotor adaptations in humans.
PLoS One. 2025 Apr 29;20(4):e0321949. doi: 10.1371/journal.pone.0321949. eCollection 2025.
3
Interlimb coordination is not strictly controlled during walking.
Commun Biol. 2024 Sep 20;7(1):1152. doi: 10.1038/s42003-024-06843-w.
4
Bidirectional locomotion induces unilateral limb adaptations.
bioRxiv. 2024 Aug 23:2024.08.22.609228. doi: 10.1101/2024.08.22.609228.
5
A sensory signal related to left-right symmetry modulates intra- and interlimb cutaneous reflexes during locomotion in intact cats.
Front Syst Neurosci. 2023 Jun 9;17:1199079. doi: 10.3389/fnsys.2023.1199079. eCollection 2023.
6
Comparison of the forward and sideways locomotor patterns in children with Cerebral Palsy.
Sci Rep. 2023 May 4;13(1):7286. doi: 10.1038/s41598-023-34369-4.
7
Joint-level coordination patterns for split-belt walking across different speed ratios.
J Neurophysiol. 2023 May 1;129(5):969-983. doi: 10.1152/jn.00323.2021. Epub 2023 Mar 29.
8
Body Weight Control Is a Key Element of Motor Control for Toddlers' Walking.
Front Netw Physiol. 2022 Mar 24;2:844607. doi: 10.3389/fnetp.2022.844607. eCollection 2022.
9
Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats.
J Neurophysiol. 2022 Dec 1;128(6):1593-1616. doi: 10.1152/jn.00230.2022. Epub 2022 Nov 16.
10
Left-Right Locomotor Coordination in Human Neonates.
J Neurosci. 2022 Aug 24;42(34):6566-6580. doi: 10.1523/JNEUROSCI.0612-22.2022. Epub 2022 Jul 13.

本文引用的文献

1
Infant stepping: a window to the behaviour of the human pattern generator for walking.
Can J Physiol Pharmacol. 2004 Aug-Sep;82(8-9):662-74. doi: 10.1139/y04-070.
2
Neuronal control of turtle hindlimb motor rhythms.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Mar;191(3):213-29. doi: 10.1007/s00359-004-0568-6. Epub 2004 Sep 25.
3
How we walk: central control of muscle activity during human walking.
Neuroscientist. 2003 Jun;9(3):195-204. doi: 10.1177/1073858403009003012.
4
Variations in motor patterns during fictive rostral scratching in the turtle: knee-related deletions.
J Neurophysiol. 2004 May;91(5):2380-4. doi: 10.1152/jn.01184.2003. Epub 2004 Jan 14.
5
Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord.
Prog Neurobiol. 2003 Jul;70(4):347-61. doi: 10.1016/s0301-0082(03)00091-1.
6
Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching.
J Neurosci. 2002 Aug 1;22(15):6800-9. doi: 10.1523/JNEUROSCI.22-15-06800.2002.
8
Sensory gating for the initiation of the swing phase in different directions of human infant stepping.
J Neurosci. 2002 Jul 1;22(13):5734-40. doi: 10.1523/JNEUROSCI.22-13-05734.2002.
9
The special nature of human walking and its neural control.
Trends Neurosci. 2002 Jul;25(7):370-6. doi: 10.1016/s0166-2236(02)02173-2.
10
Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking.
J Physiol. 2001 Dec 1;537(Pt 2):651-6. doi: 10.1111/j.1469-7793.2001.00651.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验