Gripentrog Jeannie M, Miettinen Heini M
Department of Microbiology, Montana State University, 109 Lewis Hall, Bozeman, MT 59717-3520, USA.
Cell Signal. 2005 Oct;17(10):1300-11. doi: 10.1016/j.cellsig.2005.01.006. Epub 2005 Feb 23.
G protein-coupled receptors (GPCRs) transmit diverse cellular signals in response to a large number of stimuli such as chemoattractants, lipids, neurotransmitters, odorants and light. The classical signaling pathway is through heterotrimeric G proteins, but GPCRs can also transmit signals through mechanisms that are not dependent on G proteins. In mammalian cells, the key component for this type of signaling is the family of scaffolding molecules called beta-arrestins. They can function as scaffolds for activation of mitogen-activated protein kinases, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this study we examined the role of G protein and beta-arrestin in formyl peptide receptor (FPR)-mediated activation of chemotaxis, receptor endocytosis and ERK1/2 activation using wild type and mutant receptors. Our findings suggest that, unlike certain other GPCRs that can activate ERK1/2 without the involvement of G protein, FPR requires signaling through a G protein-mediated pathway. Previous observations have shown that ERK1/2, activated through G protein, translocates to the nucleus where it stimulates transcription factors. In contrast, the scaffolding protein beta-arrestin retains the activated ERK1/2 in the cytoplasm to allow phosphorylation of cytoplasmic targets. Our experimental data show that both wild-type FPR and a mutant FPR, defective in beta-arrestin binding, induce nuclear translocation of activated ERK1/2 with similar ligand concentration dependence as seen for activation of cytosolic ERK1/2. We propose that FPR-mediated activation of ERK1/2 takes place primarily through G protein and is physiologically important to ensure transcriptional activation of myeloid immunomodulators, such as cytokines.
G蛋白偶联受体(GPCRs)可响应大量刺激(如趋化因子、脂质、神经递质、气味剂和光)传递多种细胞信号。经典的信号通路是通过异源三聚体G蛋白,但GPCRs也可以通过不依赖G蛋白的机制传递信号。在哺乳动物细胞中,这类信号传导的关键成分是称为β-抑制蛋白的支架分子家族。它们可以作为激活丝裂原活化蛋白激酶(包括细胞外信号调节激酶1和2,即ERK1/2)的支架。在本研究中,我们使用野生型和突变型受体研究了G蛋白和β-抑制蛋白在甲酰肽受体(FPR)介导的趋化性激活、受体内吞作用和ERK1/2激活中的作用。我们的研究结果表明,与某些其他无需G蛋白参与就能激活ERK1/2的GPCRs不同,FPR需要通过G蛋白介导的途径进行信号传导。先前的观察表明,通过G蛋白激活的ERK1/2会转移到细胞核中,在那里它会刺激转录因子。相比之下,支架蛋白β-抑制蛋白将激活的ERK1/2保留在细胞质中,以便磷酸化细胞质靶点。我们的实验数据表明,野生型FPR和在β-抑制蛋白结合方面存在缺陷的突变型FPR,都会诱导激活的ERK1/2发生核转位,其配体浓度依赖性与胞质ERK1/2激活时相似。我们提出,FPR介导的ERK1/2激活主要通过G蛋白发生,并且在生理上对于确保髓系免疫调节剂(如细胞因子)的转录激活很重要。